Computer Science Standards
Results
Showing 1 - 10 of 18 Standards
Standard Identifier: K-2.AP.10
Grade Range:
K–2
Concept:
Algorithms & Programming
Subconcept:
Algorithms
Practice(s):
Recognizing and Defining Computational Problems, Developing and Using Abstractions (3.2, 4.4)
Standard:
Model daily processes by creating and following algorithms to complete tasks.
Descriptive Statement:
Algorithms are sequences of instructions that describe how to complete a specific task. Students create algorithms that reflect simple life tasks inside and outside of the classroom. For example, students could create algorithms to represent daily routines for getting ready for school, transitioning through center rotations, eating lunch, and putting away art materials. Students could then write a narrative sequence of events. (CA CCSS for ELA/Literacy W.K.3, W.1.3, W.2.3) Alternatively, students could create a game or a dance with a specific set of movements to reach an intentional goal or objective. (P.E K.2, 1.2, 2.2) Additionally, students could create a map of their neighborhood and give step-by-step directions of how they get to school. (HSS.K.4, 1.2, 2.2)
Model daily processes by creating and following algorithms to complete tasks.
Descriptive Statement:
Algorithms are sequences of instructions that describe how to complete a specific task. Students create algorithms that reflect simple life tasks inside and outside of the classroom. For example, students could create algorithms to represent daily routines for getting ready for school, transitioning through center rotations, eating lunch, and putting away art materials. Students could then write a narrative sequence of events. (CA CCSS for ELA/Literacy W.K.3, W.1.3, W.2.3) Alternatively, students could create a game or a dance with a specific set of movements to reach an intentional goal or objective. (P.E K.2, 1.2, 2.2) Additionally, students could create a map of their neighborhood and give step-by-step directions of how they get to school. (HSS.K.4, 1.2, 2.2)
Standard Identifier: K-2.AP.11
Grade Range:
K–2
Concept:
Algorithms & Programming
Subconcept:
Variables
Practice(s):
Developing and Using Abstractions (4.4)
Standard:
Model the way programs store data.
Descriptive Statement:
Information in the real world can be represented in computer programs. Students model the digital storage of data by transforming real-world information into symbolic representations that include text, numbers, and images. For example, after identifying symbols on a map and explaining what they represent in the real world, students could create their own symbols and corresponding legend to represent items on a map of their classroom (HSS.K.4.3, 1.2.3, 2.2.2) Alternatively, students could invent symbols to represent beat and/or pitch. Students could then modify symbols within the notation and explain how the musical phrase changes. (VAPA Music K.1.1, 1.1.1, 2.1.1, 2.2.2)
Model the way programs store data.
Descriptive Statement:
Information in the real world can be represented in computer programs. Students model the digital storage of data by transforming real-world information into symbolic representations that include text, numbers, and images. For example, after identifying symbols on a map and explaining what they represent in the real world, students could create their own symbols and corresponding legend to represent items on a map of their classroom (HSS.K.4.3, 1.2.3, 2.2.2) Alternatively, students could invent symbols to represent beat and/or pitch. Students could then modify symbols within the notation and explain how the musical phrase changes. (VAPA Music K.1.1, 1.1.1, 2.1.1, 2.2.2)
Standard Identifier: K-2.DA.9
Grade Range:
K–2
Concept:
Data & Analysis
Subconcept:
Inference & Models
Practice(s):
Developing and Using Abstractions (4.1)
Standard:
Identify and describe patterns in data visualizations, such as charts or graphs, to make predictions.
Descriptive Statement:
Data can be used to make inferences or predictions about the world. For example, students could record the number of each color of candy in a small packet. Then, they compare their individual data with classmates. Students could use the collected data to predict how many of each colored candy will be in a full size bag of like candy. (CA CCSS for Mathematics K.MD.3, 1.MD.4, 2.MD.10) Alternatively, students could sort and classify objects according to their properties and note observations. Students could then create a graph or chart of their observations and look for connections/relationships (e.g., items that are hard are usually also smooth, or items that are fluffy are usually also light in weight.) Students then look at pictures of additional objects and make predictions regarding the properties of the objects pictured. (CA NGSS: 2-PS1-1, 2-PS1-2)
Identify and describe patterns in data visualizations, such as charts or graphs, to make predictions.
Descriptive Statement:
Data can be used to make inferences or predictions about the world. For example, students could record the number of each color of candy in a small packet. Then, they compare their individual data with classmates. Students could use the collected data to predict how many of each colored candy will be in a full size bag of like candy. (CA CCSS for Mathematics K.MD.3, 1.MD.4, 2.MD.10) Alternatively, students could sort and classify objects according to their properties and note observations. Students could then create a graph or chart of their observations and look for connections/relationships (e.g., items that are hard are usually also smooth, or items that are fluffy are usually also light in weight.) Students then look at pictures of additional objects and make predictions regarding the properties of the objects pictured. (CA NGSS: 2-PS1-1, 2-PS1-2)
Standard Identifier: 3-5.AP.10
Grade Range:
3–5
Concept:
Algorithms & Programming
Subconcept:
Algorithms
Practice(s):
Recognizing and Defining Computational Problems, Testing and Refining Computational Artifacts (3.3, 6.3)
Standard:
Compare and refine multiple algorithms for the same task and determine which is the most appropriate.
Descriptive Statement:
Different algorithms can achieve the same result, though sometimes one algorithm might be more appropriate for a specific solution. Students examine different ways to solve the same task and decide which would be the better solution for the specific scenario. For example, students could use a map and create multiple algorithms to model the early land and sea routes to and from European settlements in California. They could then compare and refine their algorithms to reflect faster travel times, shorter distances, or avoid specific characteristics, such as mountains, deserts, ocean currents, and wind patterns. (HSS.4.2.2) Alternatively, students could identify multiple algorithms for decomposing a fraction into a sum of fractions with the same denominator and record each decomposition with an equation (e.g., 2 1/8 = 1 + 1 + 1/8 = 8/8 + 8/8 + 1/8). Students could then select the most efficient algorithm (e.g., fewest number of steps). (CA CCSS for Mathematics 4.NF.3b) Additionally, students could compare algorithms that describe how to get ready for school and modify them for supporting different goals including having time to care for a pet, being able to talk with a friend before classes start, or taking a longer route to school to accompany a younger sibling to their school first. Students could then write an opinion piece, justifying with reasons their selected algorithm is most appropriate. (CA CCSS for ELA/Literacy W.3.1, W.4.1, W.5.1)
Compare and refine multiple algorithms for the same task and determine which is the most appropriate.
Descriptive Statement:
Different algorithms can achieve the same result, though sometimes one algorithm might be more appropriate for a specific solution. Students examine different ways to solve the same task and decide which would be the better solution for the specific scenario. For example, students could use a map and create multiple algorithms to model the early land and sea routes to and from European settlements in California. They could then compare and refine their algorithms to reflect faster travel times, shorter distances, or avoid specific characteristics, such as mountains, deserts, ocean currents, and wind patterns. (HSS.4.2.2) Alternatively, students could identify multiple algorithms for decomposing a fraction into a sum of fractions with the same denominator and record each decomposition with an equation (e.g., 2 1/8 = 1 + 1 + 1/8 = 8/8 + 8/8 + 1/8). Students could then select the most efficient algorithm (e.g., fewest number of steps). (CA CCSS for Mathematics 4.NF.3b) Additionally, students could compare algorithms that describe how to get ready for school and modify them for supporting different goals including having time to care for a pet, being able to talk with a friend before classes start, or taking a longer route to school to accompany a younger sibling to their school first. Students could then write an opinion piece, justifying with reasons their selected algorithm is most appropriate. (CA CCSS for ELA/Literacy W.3.1, W.4.1, W.5.1)
Standard Identifier: 3-5.AP.11
Grade Range:
3–5
Concept:
Algorithms & Programming
Subconcept:
Variables
Practice(s):
Creating Computational Artifacts (5.2)
Standard:
Create programs that use variables to store and modify data.
Descriptive Statement:
Variables are used to store and modify data. Students use variables in programs they create. At this level, students may need guidance in identifying when to create variables (i.e., performing the abstraction). For example, students could create a game to represent predators and prey in an ecosystem. They could declare a "score" variable, assign it to 0 at the start of the game, and add 1 (increment) the score each time the predator captures its prey. They could also declare a second "numberOfLives" variable, assign it to 3 at the start of the game, and subtract 1 (decrement) each time a prey is captured. They could program the game to end when "numberOfLives" equals 0. (CA NGSS: 5-LS2-1) (CA CCSS for Mathematics 5.OA.3) Alternatively, when students create programs to draw regular polygons, they could use variables to store the line size, line color, and/or side length. Students can extend learning by creatively combining a variety of polygons to create digital artwork, comparing and contrasting this to another work of art made by the use of different art tools and media, such as watercolor or tempera paints. (CA CCSS for Mathematics 3.G.1) (VAPA Visual Arts 3.1.4)
Create programs that use variables to store and modify data.
Descriptive Statement:
Variables are used to store and modify data. Students use variables in programs they create. At this level, students may need guidance in identifying when to create variables (i.e., performing the abstraction). For example, students could create a game to represent predators and prey in an ecosystem. They could declare a "score" variable, assign it to 0 at the start of the game, and add 1 (increment) the score each time the predator captures its prey. They could also declare a second "numberOfLives" variable, assign it to 3 at the start of the game, and subtract 1 (decrement) each time a prey is captured. They could program the game to end when "numberOfLives" equals 0. (CA NGSS: 5-LS2-1) (CA CCSS for Mathematics 5.OA.3) Alternatively, when students create programs to draw regular polygons, they could use variables to store the line size, line color, and/or side length. Students can extend learning by creatively combining a variety of polygons to create digital artwork, comparing and contrasting this to another work of art made by the use of different art tools and media, such as watercolor or tempera paints. (CA CCSS for Mathematics 3.G.1) (VAPA Visual Arts 3.1.4)
Standard Identifier: 3-5.DA.9
Grade Range:
3–5
Concept:
Data & Analysis
Subconcept:
Inference & Models
Practice(s):
Communicating About Computing (7.1)
Standard:
Use data to highlight and/or propose relationships, predict outcomes, or communicate ideas.
Descriptive Statement:
The accuracy of data analysis is related to how the data is represented. Inferences or predictions based on data are less likely to be accurate if the data is insufficient, incomplete, or inaccurate or if the data is incorrect in some way. Additionally, people select aspects and subsets of data to be transformed, organized, and categorized. Students should be able to refer to data when communicating an idea, in order to highlight and/or propose relationships, predict outcomes, highlight different views and/or communicate insights and ideas. For example, students can be provided a scenario in which they are city managers who have a specific amount of funds to improve a city in California. Students can collect data of a city concerning land use, vegetation, wildlife, climate, population density, services and transportation (HSS.4.1.5) to determine and present what area needs to be focused on to improve a problem. Students can compare their data and planned use of funds with peers, clearly communicating or predict outcomes based on data collected. (CA CCCS for ELA/Literacy SL.3.1, SL.4.1, SL.5.1) Alternatively, students could record the temperature at noon each day to show that temperatures are higher in certain months of the year. If temperatures are not recorded on non-school days or are recorded incorrectly, the data would be incomplete and ideas being communicated could be inaccurate. Students may also record the day of the week on which the data was collected, but this would have no relevance to whether temperatures are higher or lower. In order to have sufficient and accurate data on which to communicate the idea, students might use data provided by a governmental weather agency. (CA NGSS: 3-ESS2-1)
Use data to highlight and/or propose relationships, predict outcomes, or communicate ideas.
Descriptive Statement:
The accuracy of data analysis is related to how the data is represented. Inferences or predictions based on data are less likely to be accurate if the data is insufficient, incomplete, or inaccurate or if the data is incorrect in some way. Additionally, people select aspects and subsets of data to be transformed, organized, and categorized. Students should be able to refer to data when communicating an idea, in order to highlight and/or propose relationships, predict outcomes, highlight different views and/or communicate insights and ideas. For example, students can be provided a scenario in which they are city managers who have a specific amount of funds to improve a city in California. Students can collect data of a city concerning land use, vegetation, wildlife, climate, population density, services and transportation (HSS.4.1.5) to determine and present what area needs to be focused on to improve a problem. Students can compare their data and planned use of funds with peers, clearly communicating or predict outcomes based on data collected. (CA CCCS for ELA/Literacy SL.3.1, SL.4.1, SL.5.1) Alternatively, students could record the temperature at noon each day to show that temperatures are higher in certain months of the year. If temperatures are not recorded on non-school days or are recorded incorrectly, the data would be incomplete and ideas being communicated could be inaccurate. Students may also record the day of the week on which the data was collected, but this would have no relevance to whether temperatures are higher or lower. In order to have sufficient and accurate data on which to communicate the idea, students might use data provided by a governmental weather agency. (CA NGSS: 3-ESS2-1)
Standard Identifier: 6-8.AP.10
Grade Range:
6–8
Concept:
Algorithms & Programming
Subconcept:
Algorithms
Practice(s):
Developing and Using Abstractions (4.1, 4.4)
Standard:
Use flowcharts and/or pseudocode to design and illustrate algorithms that solve complex problems.
Descriptive Statement:
Complex problems are problems that would be difficult for students to solve without breaking them down into multiple steps. Flowcharts and pseudocode are used to design and illustrate the breakdown of steps in an algorithm. Students design and illustrate algorithms using pseudocode and/or flowcharts that organize and sequence the breakdown of steps for solving complex problems. For example, students might use a flowchart to illustrate an algorithm that produces a recommendation for purchasing sneakers based on inputs such as size, colors, brand, comfort, and cost. Alternatively, students could write pseudocode to express an algorithm for suggesting their outfit for the day, based on inputs such as the weather, color preferences, and day of the week.
Use flowcharts and/or pseudocode to design and illustrate algorithms that solve complex problems.
Descriptive Statement:
Complex problems are problems that would be difficult for students to solve without breaking them down into multiple steps. Flowcharts and pseudocode are used to design and illustrate the breakdown of steps in an algorithm. Students design and illustrate algorithms using pseudocode and/or flowcharts that organize and sequence the breakdown of steps for solving complex problems. For example, students might use a flowchart to illustrate an algorithm that produces a recommendation for purchasing sneakers based on inputs such as size, colors, brand, comfort, and cost. Alternatively, students could write pseudocode to express an algorithm for suggesting their outfit for the day, based on inputs such as the weather, color preferences, and day of the week.
Standard Identifier: 6-8.AP.11
Grade Range:
6–8
Concept:
Algorithms & Programming
Subconcept:
Variables
Practice(s):
Creating Computational Artifacts (5.1, 5.2)
Standard:
Create clearly named variables that store data, and perform operations on their contents.
Descriptive Statement:
A variable is a container for data, and the name used for accessing the variable is called the identifier. Students declare, initialize, and update variables for storing different types of program data (e.g., text, integers) using names and naming conventions (e.g. camel case) that clearly convey the purpose of the variable, facilitate debugging, and improve readability. For example, students could program a quiz game with a score variable (e.g. quizScore) that is initially set to zero and increases by increments of one each time the user answers a quiz question correctly and decreases by increments of one each time a user answers a quiz question incorrectly, resulting in a score that is either a positive or negative integer. (CA CCSS for Mathematics 6.NS.5) Alternatively, students could write a program that prompts the user for their name, stores the user's response in a variable (e.g. userName), and uses this variable to greet the user by name.
Create clearly named variables that store data, and perform operations on their contents.
Descriptive Statement:
A variable is a container for data, and the name used for accessing the variable is called the identifier. Students declare, initialize, and update variables for storing different types of program data (e.g., text, integers) using names and naming conventions (e.g. camel case) that clearly convey the purpose of the variable, facilitate debugging, and improve readability. For example, students could program a quiz game with a score variable (e.g. quizScore) that is initially set to zero and increases by increments of one each time the user answers a quiz question correctly and decreases by increments of one each time a user answers a quiz question incorrectly, resulting in a score that is either a positive or negative integer. (CA CCSS for Mathematics 6.NS.5) Alternatively, students could write a program that prompts the user for their name, stores the user's response in a variable (e.g. userName), and uses this variable to greet the user by name.
Standard Identifier: 6-8.DA.9
Grade Range:
6–8
Concept:
Data & Analysis
Subconcept:
Inference & Models
Practice(s):
Developing and Using Abstractions, Testing and Refining Computational Artifacts (4.4, 6.1)
Standard:
Test and analyze the effects of changing variables while using computational models.
Descriptive Statement:
Variables within a computational model may be changed, in order to alter a computer simulation or to more accurately represent how various data is related. Students interact with a given model, make changes to identified model variables, and observe and reflect upon the results. For example, students could test a program that makes a robot move on a track by making changes to variables (e.g., height and angle of track, size and mass of the robot) and discussing how these changes affect how far the robot travels. (CA NGSS: MS-PS2-2) Alternatively, students could test a game simulation and change variables (e.g., skill of simulated players, nature of opening moves) and analyze how these changes affect who wins the game. (CA NGSS: MS-ETS1-3) Additionally, students could modify a model for predicting the likely color of the next pick from a bag of colored candy and analyze the effects of changing variables representing the common color ratios in a typical bag of candy. (CA CCSS for Mathematics 7.SP.7, 8.SP.4)
Test and analyze the effects of changing variables while using computational models.
Descriptive Statement:
Variables within a computational model may be changed, in order to alter a computer simulation or to more accurately represent how various data is related. Students interact with a given model, make changes to identified model variables, and observe and reflect upon the results. For example, students could test a program that makes a robot move on a track by making changes to variables (e.g., height and angle of track, size and mass of the robot) and discussing how these changes affect how far the robot travels. (CA NGSS: MS-PS2-2) Alternatively, students could test a game simulation and change variables (e.g., skill of simulated players, nature of opening moves) and analyze how these changes affect who wins the game. (CA NGSS: MS-ETS1-3) Additionally, students could modify a model for predicting the likely color of the next pick from a bag of colored candy and analyze the effects of changing variables representing the common color ratios in a typical bag of candy. (CA CCSS for Mathematics 7.SP.7, 8.SP.4)
Standard Identifier: 9-12.AP.12
Grade Range:
9–12
Concept:
Algorithms & Programming
Subconcept:
Algorithms
Practice(s):
Developing and Using Abstractions, Creating Computational Artifacts (4.2, 5.1)
Standard:
Design algorithms to solve computational problems using a combination of original and existing algorithms.
Descriptive Statement:
Knowledge of common algorithms improves how people develop software, secure data, and store information. Some algorithms may be easier to implement in a particular programming language, work faster, require less memory to store data, and be applicable in a wider variety of situations than other algorithms. Algorithms used to search and sort data are common in a variety of software applications. For example, students could design an algorithm to calculate and display various sports statistics and use common sorting or mathematical algorithms (e.g., average) in the design of the overall algorithm. Alternatively, students could design an algorithm to implement a game and use existing randomization algorithms to place pieces randomly in starting positions or to control the "roll" of a dice or selection of a "card" from a deck.
Design algorithms to solve computational problems using a combination of original and existing algorithms.
Descriptive Statement:
Knowledge of common algorithms improves how people develop software, secure data, and store information. Some algorithms may be easier to implement in a particular programming language, work faster, require less memory to store data, and be applicable in a wider variety of situations than other algorithms. Algorithms used to search and sort data are common in a variety of software applications. For example, students could design an algorithm to calculate and display various sports statistics and use common sorting or mathematical algorithms (e.g., average) in the design of the overall algorithm. Alternatively, students could design an algorithm to implement a game and use existing randomization algorithms to place pieces randomly in starting positions or to control the "roll" of a dice or selection of a "card" from a deck.
Showing 1 - 10 of 18 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881