Skip to main content
California Department of Education Logo

Computer Science Standards




Results


Showing 11 - 16 of 16 Standards

Standard Identifier: 9-12.IC.26

Grade Range: 9–12
Concept: Impacts of Computing
Subconcept: Culture
Practice(s): Communicating About Computing (7.2)

Standard:
Study, discuss, and think critically about the potential impacts and implications of emerging technologies on larger social, economic, and political structures, with evidence from credible sources.

Descriptive Statement:
For example, after studying the rise of artifical intelligence, students create a cause and effect chart to represent positive and negative impacts of this technology on society.

Standard Identifier: 9-12.NI.6

Grade Range: 9–12
Concept: Networks & the Internet
Subconcept: Cybersecurity
Practice(s): Communicating About Computing (7.2)

Standard:
Compare and contrast security measures to address various security threats.

Descriptive Statement:
Network security depends on a combination of hardware, software, and practices that control access to data and systems. The needs of users and the sensitivity of data determine the level of security implemented. Potential security problems, such as denial-of-service attacks, ransomware, viruses, worms, spyware, and phishing, present threats to sensitive data. Students compare and contrast different types of security measures based on factors such as efficiency, feasibility, ethical impacts, usability, and security. At this level, students are not expected to develop or implement the security measures that they discuss. For example, students could review case studies or current events in which governments or organizations experienced data leaks or data loss as a result of these types of attacks. Students could provide an analysis of actual security measures taken comparing to other security measure which may have led to different outcomes. Alternatively, students might discuss computer security policies in place at the local level that present a tradeoff between usability and security, such as a web filter that prevents access to many educational sites but keeps the campus network safe.

Standard Identifier: 9-12S.CS.1

Grade Range: 9–12 Specialty
Concept: Computing Systems
Subconcept: Devices
Practice(s): Developing and Using Abstractions, Communicating About Computing (4.4, 7.2)

Standard:
Illustrate ways computing systems implement logic through hardware components.

Descriptive Statement:
Computing systems use processors (e.g., a central processing unit or CPU) to execute program instructions. Processors are composed of components that implement the logical or computational operations required by the instructions. AND, OR, and NOT are examples of logic gates. Adders are examples of higher-leveled circuits built using low-level logic gates. Students illustrate how modern computing devices are made up of smaller and simpler components which implement the logic underlying the functionality of a computer processor. At this level, knowledge of how logic gates are constructed is not expected. For example, students could construct truth tables, draw logic circuit diagrams, or use an online logic circuit simulator. Students could explore the interaction of the CPU, RAM, and I/O by labeling a diagram of the von Neumann architecture. Alternatively, students could design higher-level circuits using low-level logic gates (e.g., adders).

Standard Identifier: 9-12S.IC.27

Grade Range: 9–12 Specialty
Concept: Impacts of Computing
Subconcept: Culture
Practice(s): Fostering an Inclusive Computing Culture, Testing and Refining Computational Artifacts (1.2, 6.1)

Standard:
Evaluate computational artifacts with regard to improving their beneficial effects and reducing harmful effects on society.

Descriptive Statement:
People design computational artifacts to help make the lives of humans better. Students evaluate an artifact and comment on aspects of it which positively or negatively impact users and give ideas for reducing the possible negative impacts. For example, students could discuss how algorithms that screen job candidates' resumes can cut costs for companies (a beneficial effect) but introduce or amplify bias in the hiring process (a harmful effect). Alternatively, students could discuss how turn-by-turn navigation tools can help drivers avoid traffic and find alternate routes (a beneficial effect), but sometimes channel large amounts of traffic down small neighborhood streets (a harmful effect). Additionally, students could discuss how social media algorithms can help direct users' attention to interesting content (a beneficial effect), while simultaneously limiting users' exposure to information that contradicts pre-existing beliefs (a harmful effect).

Standard Identifier: 9-12S.IC.28

Grade Range: 9–12 Specialty
Concept: Impacts of Computing
Subconcept: Culture
Practice(s): Communicating About Computing (7.2)

Standard:
Evaluate how computational innovations that have revolutionized aspects of our culture might evolve.

Descriptive Statement:
It is important to be able to evaluate current technologies and innovations and their potential for future impact on society. Students describe how a given computational innovation might change in the future and impacts these evolutions could have on society, economy, or culture. For example, students could consider ways in which computers may support education (or healthcare) in the future, or how developments in virtual reality might impact arts and entertainment. Alternatively, students could consider how autonomous vehicles will affect individuals' car ownership and car use habits as well as industries that employ human drivers (e.g., trucking, taxi service).

Standard Identifier: 9-12S.NI.5

Grade Range: 9–12 Specialty
Concept: Networks & the Internet
Subconcept: Cybersecurity
Practice(s): Creating Computational Artifacts (5.3)

Standard:
Develop solutions to security threats.

Descriptive Statement:
Designing and implementing cybersecurity measures requires knowledge of software, hardware, and human components and understanding tradeoffs. Students design solutions to security threats and compare tradeoffs of easier access and use against the costs of losing information and disrupting services. For example, students could refine a technology that allows users to use blank or weak passwords. Alternatively, students could implement a firewall or proxy protection between an organization's private local area network (LAN) and the public Internet. Additionally, students could find and close exploitable threats on an infected computer in order to protect information.

Showing 11 - 16 of 16 Standards


Questions: Curriculum Frameworks and Instructional Resources Division | CFIRD@cde.ca.gov | 916-319-0881