Computer Science Standards
Results
Showing 11 - 13 of 13 Standards
Standard Identifier: 9-12S.AP.12
Grade Range:
9–12 Specialty
Concept:
Algorithms & Programming
Subconcept:
Algorithms
Practice(s):
Developing and Using Abstractions, Creating Computational Artifacts (4.2, 5.2)
Standard:
Implement searching and sorting algorithms to solve computational problems.
Descriptive Statement:
One of the core uses of computers is to store, organize, and retrieve information when working with large amounts of data. Students create computational artifacts that use searching and/or sorting algorithms to retrieve, organize, or store information. Students do not need to select their algorithm based on efficiency. For example, students could write a script to sequence their classmates in order from youngest to oldest. Alternatively, students could write a program to find certain words within a text and report their location.
Implement searching and sorting algorithms to solve computational problems.
Descriptive Statement:
One of the core uses of computers is to store, organize, and retrieve information when working with large amounts of data. Students create computational artifacts that use searching and/or sorting algorithms to retrieve, organize, or store information. Students do not need to select their algorithm based on efficiency. For example, students could write a script to sequence their classmates in order from youngest to oldest. Alternatively, students could write a program to find certain words within a text and report their location.
Standard Identifier: 9-12S.AP.13
Grade Range:
9–12 Specialty
Concept:
Algorithms & Programming
Subconcept:
Algorithms
Practice(s):
Recognizing and Defining Computational Problems (3.3)
Standard:
Evaluate algorithms in terms of their efficiency.
Descriptive Statement:
Algorithms that perform the same task can be implemented in different ways, which take different amounts of time to run on a given input set. Algorithms are commonly evaluated using asymptotic analysis (i.e., “Big O”) which involves exploration of behavior when the input set grows very large. Students classify algorithms by the most common time classes (e.g., log n, linear, n log n, and quadratic or higher). For example, students could read a given algorithm, identify the control constructs, and in conjunction with input size, identify the efficiency class of the algorithm.
Evaluate algorithms in terms of their efficiency.
Descriptive Statement:
Algorithms that perform the same task can be implemented in different ways, which take different amounts of time to run on a given input set. Algorithms are commonly evaluated using asymptotic analysis (i.e., “Big O”) which involves exploration of behavior when the input set grows very large. Students classify algorithms by the most common time classes (e.g., log n, linear, n log n, and quadratic or higher). For example, students could read a given algorithm, identify the control constructs, and in conjunction with input size, identify the efficiency class of the algorithm.
Standard Identifier: 9-12S.DA.9
Grade Range:
9–12 Specialty
Concept:
Data & Analysis
Subconcept:
Inference & Models
Practice(s):
Developing and Using Abstractions (4.4)
Standard:
Evaluate the ability of models and simulations to test and support the refinement of hypotheses.
Descriptive Statement:
A model could be implemented as a diagram or a program that represents key properties of a physical or other system. A simulation is based on a model, and enables observation of the system as key properties change. Students explore, explain, and evaluate existing models and simulations, in order to support the refinement of hypotheses about how the systems work. At this level, the ability to accurately and completely model and simulate complex systems is not expected. For example, a computer model of ants following a path created by other ants who found food explains the trail-like travel patterns of the insect. Students could evaluate if the output of the model fits well with their hypothesis that ants navigate the world through the use of pheromones. They could explain how the computer model supports this hypothesis and how it might leave out certain aspects of ant behavior and whether these are important to understanding ant travel behavior. Alternatively, students could hypothesize how different ground characteristics (e.g., soil type, thickness of sediment above bedrock) relate to the severity of shaking at the surface during an earthquake. They could add or modify input about ground characteristics into an earthquake simulator, observe the changed simulation output, and then evaluate their hypotheses.
Evaluate the ability of models and simulations to test and support the refinement of hypotheses.
Descriptive Statement:
A model could be implemented as a diagram or a program that represents key properties of a physical or other system. A simulation is based on a model, and enables observation of the system as key properties change. Students explore, explain, and evaluate existing models and simulations, in order to support the refinement of hypotheses about how the systems work. At this level, the ability to accurately and completely model and simulate complex systems is not expected. For example, a computer model of ants following a path created by other ants who found food explains the trail-like travel patterns of the insect. Students could evaluate if the output of the model fits well with their hypothesis that ants navigate the world through the use of pheromones. They could explain how the computer model supports this hypothesis and how it might leave out certain aspects of ant behavior and whether these are important to understanding ant travel behavior. Alternatively, students could hypothesize how different ground characteristics (e.g., soil type, thickness of sediment above bedrock) relate to the severity of shaking at the surface during an earthquake. They could add or modify input about ground characteristics into an earthquake simulator, observe the changed simulation output, and then evaluate their hypotheses.
Showing 11 - 13 of 13 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881