Computer Science Standards
Results
Showing 11 - 20 of 35 Standards
Standard Identifier: 3-5.DA.9
Grade Range:
3–5
Concept:
Data & Analysis
Subconcept:
Inference & Models
Practice(s):
Communicating About Computing (7.1)
Standard:
Use data to highlight and/or propose relationships, predict outcomes, or communicate ideas.
Descriptive Statement:
The accuracy of data analysis is related to how the data is represented. Inferences or predictions based on data are less likely to be accurate if the data is insufficient, incomplete, or inaccurate or if the data is incorrect in some way. Additionally, people select aspects and subsets of data to be transformed, organized, and categorized. Students should be able to refer to data when communicating an idea, in order to highlight and/or propose relationships, predict outcomes, highlight different views and/or communicate insights and ideas. For example, students can be provided a scenario in which they are city managers who have a specific amount of funds to improve a city in California. Students can collect data of a city concerning land use, vegetation, wildlife, climate, population density, services and transportation (HSS.4.1.5) to determine and present what area needs to be focused on to improve a problem. Students can compare their data and planned use of funds with peers, clearly communicating or predict outcomes based on data collected. (CA CCCS for ELA/Literacy SL.3.1, SL.4.1, SL.5.1) Alternatively, students could record the temperature at noon each day to show that temperatures are higher in certain months of the year. If temperatures are not recorded on non-school days or are recorded incorrectly, the data would be incomplete and ideas being communicated could be inaccurate. Students may also record the day of the week on which the data was collected, but this would have no relevance to whether temperatures are higher or lower. In order to have sufficient and accurate data on which to communicate the idea, students might use data provided by a governmental weather agency. (CA NGSS: 3-ESS2-1)
Use data to highlight and/or propose relationships, predict outcomes, or communicate ideas.
Descriptive Statement:
The accuracy of data analysis is related to how the data is represented. Inferences or predictions based on data are less likely to be accurate if the data is insufficient, incomplete, or inaccurate or if the data is incorrect in some way. Additionally, people select aspects and subsets of data to be transformed, organized, and categorized. Students should be able to refer to data when communicating an idea, in order to highlight and/or propose relationships, predict outcomes, highlight different views and/or communicate insights and ideas. For example, students can be provided a scenario in which they are city managers who have a specific amount of funds to improve a city in California. Students can collect data of a city concerning land use, vegetation, wildlife, climate, population density, services and transportation (HSS.4.1.5) to determine and present what area needs to be focused on to improve a problem. Students can compare their data and planned use of funds with peers, clearly communicating or predict outcomes based on data collected. (CA CCCS for ELA/Literacy SL.3.1, SL.4.1, SL.5.1) Alternatively, students could record the temperature at noon each day to show that temperatures are higher in certain months of the year. If temperatures are not recorded on non-school days or are recorded incorrectly, the data would be incomplete and ideas being communicated could be inaccurate. Students may also record the day of the week on which the data was collected, but this would have no relevance to whether temperatures are higher or lower. In order to have sufficient and accurate data on which to communicate the idea, students might use data provided by a governmental weather agency. (CA NGSS: 3-ESS2-1)
Standard Identifier: 3-5.NI.5
Grade Range:
3–5
Concept:
Networks & the Internet
Subconcept:
Cybersecurity
Practice(s):
Recognizing and Defining Computational Problems (3.1)
Standard:
Describe physical and digital security measures for protecting personal information.
Descriptive Statement:
Personal information can be protected physically and digitally. Cybersecurity is the protection from unauthorized use of electronic data, or the measures taken to achieve this. Students identify what personal information is and the reasons for protecting it. Students describe physical and digital approaches for protecting personal information such as using strong passwords and biometric scanners. For example, students could engage in a collaborative discussion orally or in writing regarding topics that relate to personal cybersecurity issues. Discussion topics could be based on current events related to cybersecurity or topics that are applicable to students, such as the necessity of backing up data to guard against loss, how to create strong passwords and the importance of not sharing passwords, or why we should keep operating systems updated and use anti-virus software to protect data and systems. Students could also discuss physical measures that can be used to protect data including biometric scanners, locked doors, and physical backups. (CA CCSS for ELA/Literacy SL.3.1, SL.4.1, SL.5.1)
Describe physical and digital security measures for protecting personal information.
Descriptive Statement:
Personal information can be protected physically and digitally. Cybersecurity is the protection from unauthorized use of electronic data, or the measures taken to achieve this. Students identify what personal information is and the reasons for protecting it. Students describe physical and digital approaches for protecting personal information such as using strong passwords and biometric scanners. For example, students could engage in a collaborative discussion orally or in writing regarding topics that relate to personal cybersecurity issues. Discussion topics could be based on current events related to cybersecurity or topics that are applicable to students, such as the necessity of backing up data to guard against loss, how to create strong passwords and the importance of not sharing passwords, or why we should keep operating systems updated and use anti-virus software to protect data and systems. Students could also discuss physical measures that can be used to protect data including biometric scanners, locked doors, and physical backups. (CA CCSS for ELA/Literacy SL.3.1, SL.4.1, SL.5.1)
Standard Identifier: 3-5.NI.6
Grade Range:
3–5
Concept:
Networks & the Internet
Subconcept:
Cybersecurity
Practice(s):
Developing and Using Abstractions (4.4)
Standard:
Create patterns to protect information from unauthorized access.
Descriptive Statement:
Encryption is the process of converting information or data into a code, especially to prevent unauthorized access. At this level, students use patterns as a code for encryption, to protect information. Patterns should be decodable to the party for whom the message is intended, but difficult or impossible for those with unauthorized access. For example, students could create encrypted messages via flashing a flashlight in Morse code. Other students could decode this established language even if it wasn't meant for them. To model the idea of protecting data, students should create their own variations on or changes to Morse code. This ensures that when a member of that group flashes a message only other members of their group can decode it, even if other students in the room can see it. (CA NGSS: 4-PS4-3) Alternatively, students could engage in a CS Unplugged activity that models public key encryption: One student puts a paper containing a written secret in a box, locks it with a padlock, and hands the box to a second student. Student 2 puts on a second padlock and hands it back. Student 1 removes her lock and hands the box to student 2 again. Student 2 removes his lock, opens the box, and has access to the secret that student 1 sent him. Because the box always contained at least one lock while in transit, an outside party never had the opportunity to see the message and it is protected.
Create patterns to protect information from unauthorized access.
Descriptive Statement:
Encryption is the process of converting information or data into a code, especially to prevent unauthorized access. At this level, students use patterns as a code for encryption, to protect information. Patterns should be decodable to the party for whom the message is intended, but difficult or impossible for those with unauthorized access. For example, students could create encrypted messages via flashing a flashlight in Morse code. Other students could decode this established language even if it wasn't meant for them. To model the idea of protecting data, students should create their own variations on or changes to Morse code. This ensures that when a member of that group flashes a message only other members of their group can decode it, even if other students in the room can see it. (CA NGSS: 4-PS4-3) Alternatively, students could engage in a CS Unplugged activity that models public key encryption: One student puts a paper containing a written secret in a box, locks it with a padlock, and hands the box to a second student. Student 2 puts on a second padlock and hands it back. Student 1 removes her lock and hands the box to student 2 again. Student 2 removes his lock, opens the box, and has access to the secret that student 1 sent him. Because the box always contained at least one lock while in transit, an outside party never had the opportunity to see the message and it is protected.
Standard Identifier: 6-8.AP.12
Grade Range:
6–8
Concept:
Algorithms & Programming
Subconcept:
Control
Practice(s):
Creating Computational Artifacts (5.1, 5.2)
Standard:
Design and iteratively develop programs that combine control structures and use compound conditions.
Descriptive Statement:
Control structures can be combined in many ways. Nested loops are loops placed within loops, and nested conditionals allow the result of one conditional to lead to another. Compound conditions combine two or more conditions in a logical relationship (e.g., using AND, OR, and NOT). Students appropriately use control structures to perform repetitive and selection tasks. For example, when programming an interactive story, students could use a compound conditional within a loop to unlock a door only if a character has a key AND is touching the door. (CA CCSS for ELA/Literacy W.6.3, W.7.3, W.8.3) Alternatively, students could use compound conditionals when writing a program to test whether two points lie along the line defined by a particular linear function. (CA CCSS for Mathematics 8.EE.7) Additionally, students could use nested loops to program a character to do the "chicken dance" by opening and closing the beak, flapping the wings, shaking the hips, and clapping four times each; this dance "chorus" is then repeated several times in its entirety.
Design and iteratively develop programs that combine control structures and use compound conditions.
Descriptive Statement:
Control structures can be combined in many ways. Nested loops are loops placed within loops, and nested conditionals allow the result of one conditional to lead to another. Compound conditions combine two or more conditions in a logical relationship (e.g., using AND, OR, and NOT). Students appropriately use control structures to perform repetitive and selection tasks. For example, when programming an interactive story, students could use a compound conditional within a loop to unlock a door only if a character has a key AND is touching the door. (CA CCSS for ELA/Literacy W.6.3, W.7.3, W.8.3) Alternatively, students could use compound conditionals when writing a program to test whether two points lie along the line defined by a particular linear function. (CA CCSS for Mathematics 8.EE.7) Additionally, students could use nested loops to program a character to do the "chicken dance" by opening and closing the beak, flapping the wings, shaking the hips, and clapping four times each; this dance "chorus" is then repeated several times in its entirety.
Standard Identifier: 6-8.AP.13
Grade Range:
6–8
Concept:
Algorithms & Programming
Subconcept:
Modularity
Practice(s):
Recognizing and Defining Computational Problems (3.2)
Standard:
Decompose problems and subproblems into parts to facilitate the design, implementation, and review of programs.
Descriptive Statement:
Decomposition facilitates program development by allowing students to focus on one piece at a time (e.g., getting input from the user, processing the data, and displaying the result to the user). Decomposition also enables different students to work on different parts at the same time. Students break down (decompose) problems into subproblems, which can be further broken down to smaller parts. Students could create an arcade game, with a title screen, a game screen, and a win/lose screen with an option to play the game again. To do this, students need to identify subproblems that accompany each screen (e.g., selecting an avatar goes in the title screen, events for controlling character action and scoring goes in the game screen, and displaying final and high score and asking whether to play again goes in the win/lose screen). Alternatively, students could decompose the problem of calculating and displaying class grades. Subproblems might include: accept input for students grades on various assignments, check for invalid grade entries, calculate per assignment averages, calculate per student averages, and display histograms of student scores for each assignment. (CA CCSS for Mathematics 6.RP.3c, 6.SP.4, 6.SP.5)
Decompose problems and subproblems into parts to facilitate the design, implementation, and review of programs.
Descriptive Statement:
Decomposition facilitates program development by allowing students to focus on one piece at a time (e.g., getting input from the user, processing the data, and displaying the result to the user). Decomposition also enables different students to work on different parts at the same time. Students break down (decompose) problems into subproblems, which can be further broken down to smaller parts. Students could create an arcade game, with a title screen, a game screen, and a win/lose screen with an option to play the game again. To do this, students need to identify subproblems that accompany each screen (e.g., selecting an avatar goes in the title screen, events for controlling character action and scoring goes in the game screen, and displaying final and high score and asking whether to play again goes in the win/lose screen). Alternatively, students could decompose the problem of calculating and displaying class grades. Subproblems might include: accept input for students grades on various assignments, check for invalid grade entries, calculate per assignment averages, calculate per student averages, and display histograms of student scores for each assignment. (CA CCSS for Mathematics 6.RP.3c, 6.SP.4, 6.SP.5)
Standard Identifier: 6-8.AP.14
Grade Range:
6–8
Concept:
Algorithms & Programming
Subconcept:
Modularity
Practice(s):
Developing and Using Abstractions (4.1, 4.3)
Standard:
Create procedures with parameters to organize code and make it easier to reuse.
Descriptive Statement:
Procedures support modularity in developing programs. Parameters can provide greater flexibility, reusability, and efficient use of resources. Students create procedures and/or functions that are used multiple times within a program to repeat groups of instructions. They generalize the procedures and/or functions by defining parameters that generate different outputs for a wide range of inputs. For example, students could create a procedure to draw a circle which involves many instructions, but all of them can be invoked with one instruction, such as “drawCircle.” By adding a radius parameter, students can easily draw circles of different sizes. (CA CCSS for Mathematics 7.G.4) Alternatively, calculating the area of a regular polygon requires multiple steps. Students could write a function that accepts the number and length of the sides as parameters and then calculates the area of the polygon. This function can then be re-used inside any program to calculate the area of a regular polygon. (CA CCSS for Mathematics 6.G.1)
Create procedures with parameters to organize code and make it easier to reuse.
Descriptive Statement:
Procedures support modularity in developing programs. Parameters can provide greater flexibility, reusability, and efficient use of resources. Students create procedures and/or functions that are used multiple times within a program to repeat groups of instructions. They generalize the procedures and/or functions by defining parameters that generate different outputs for a wide range of inputs. For example, students could create a procedure to draw a circle which involves many instructions, but all of them can be invoked with one instruction, such as “drawCircle.” By adding a radius parameter, students can easily draw circles of different sizes. (CA CCSS for Mathematics 7.G.4) Alternatively, calculating the area of a regular polygon requires multiple steps. Students could write a function that accepts the number and length of the sides as parameters and then calculates the area of the polygon. This function can then be re-used inside any program to calculate the area of a regular polygon. (CA CCSS for Mathematics 6.G.1)
Standard Identifier: 6-8.CS.3
Grade Range:
6–8
Concept:
Computing Systems
Subconcept:
Troubleshooting
Practice(s):
Testing and Refining Computational Artifacts (6.2)
Standard:
Systematically apply troubleshooting strategies to identify and resolve hardware and software problems in computing systems.
Descriptive Statement:
When problems occur within computing systems, it is important to take a structured, step-by-step approach to effectively solve the problem and ensure that potential solutions are not overlooked. Examples of troubleshooting strategies include following a troubleshooting flow diagram, making changes to software to see if hardware will work, checking connections and settings, and swapping in working components. Since a computing device may interact with interconnected devices within a system, problems may not be due to the specific computing device itself but to devices connected to it. For example, students could work through a checklist of solutions for connectivity problems in a lab of computers connected wirelessly or through physical cables. They could also search for technical information online and engage in technical reading to create troubleshooting documents that they then apply. (CA CCSS for ELA/Literacy RST.6-8.10) Alternatively, students could explore and utilize operating system tools to reset a computer's default language to English. Additionally, students could swap out an externally-controlled sensor giving fluctuating readings with a new sensor to check whether there is a hardware problem.
Systematically apply troubleshooting strategies to identify and resolve hardware and software problems in computing systems.
Descriptive Statement:
When problems occur within computing systems, it is important to take a structured, step-by-step approach to effectively solve the problem and ensure that potential solutions are not overlooked. Examples of troubleshooting strategies include following a troubleshooting flow diagram, making changes to software to see if hardware will work, checking connections and settings, and swapping in working components. Since a computing device may interact with interconnected devices within a system, problems may not be due to the specific computing device itself but to devices connected to it. For example, students could work through a checklist of solutions for connectivity problems in a lab of computers connected wirelessly or through physical cables. They could also search for technical information online and engage in technical reading to create troubleshooting documents that they then apply. (CA CCSS for ELA/Literacy RST.6-8.10) Alternatively, students could explore and utilize operating system tools to reset a computer's default language to English. Additionally, students could swap out an externally-controlled sensor giving fluctuating readings with a new sensor to check whether there is a hardware problem.
Standard Identifier: 6-8.DA.9
Grade Range:
6–8
Concept:
Data & Analysis
Subconcept:
Inference & Models
Practice(s):
Developing and Using Abstractions, Testing and Refining Computational Artifacts (4.4, 6.1)
Standard:
Test and analyze the effects of changing variables while using computational models.
Descriptive Statement:
Variables within a computational model may be changed, in order to alter a computer simulation or to more accurately represent how various data is related. Students interact with a given model, make changes to identified model variables, and observe and reflect upon the results. For example, students could test a program that makes a robot move on a track by making changes to variables (e.g., height and angle of track, size and mass of the robot) and discussing how these changes affect how far the robot travels. (CA NGSS: MS-PS2-2) Alternatively, students could test a game simulation and change variables (e.g., skill of simulated players, nature of opening moves) and analyze how these changes affect who wins the game. (CA NGSS: MS-ETS1-3) Additionally, students could modify a model for predicting the likely color of the next pick from a bag of colored candy and analyze the effects of changing variables representing the common color ratios in a typical bag of candy. (CA CCSS for Mathematics 7.SP.7, 8.SP.4)
Test and analyze the effects of changing variables while using computational models.
Descriptive Statement:
Variables within a computational model may be changed, in order to alter a computer simulation or to more accurately represent how various data is related. Students interact with a given model, make changes to identified model variables, and observe and reflect upon the results. For example, students could test a program that makes a robot move on a track by making changes to variables (e.g., height and angle of track, size and mass of the robot) and discussing how these changes affect how far the robot travels. (CA NGSS: MS-PS2-2) Alternatively, students could test a game simulation and change variables (e.g., skill of simulated players, nature of opening moves) and analyze how these changes affect who wins the game. (CA NGSS: MS-ETS1-3) Additionally, students could modify a model for predicting the likely color of the next pick from a bag of colored candy and analyze the effects of changing variables representing the common color ratios in a typical bag of candy. (CA CCSS for Mathematics 7.SP.7, 8.SP.4)
Standard Identifier: 6-8.NI.5
Grade Range:
6–8
Concept:
Networks & the Internet
Subconcept:
Cybersecurity
Practice(s):
Recognizing and Defining Computational Problems (3.1, 3.3)
Standard:
Explain potential security threats and security measures to mitigate threats.
Descriptive Statement:
Cybersecurity is an important field of study and it is valuable for students to understand the need for protecting sensitive data. Students identify multiple methods for protecting data and articulate the value and appropriateness for each method. Students are not expected to implement or explain the implementation of such technologies. For example, students could explain the importance of keeping passwords hidden, setting secure router administrator passwords, erasing a storage device before it is reused, and using firewalls to restrict access to private networks. Alternatively, students could explain the importance of two-factor authentication and HTTPS connections to ensure secure data transmission.
Explain potential security threats and security measures to mitigate threats.
Descriptive Statement:
Cybersecurity is an important field of study and it is valuable for students to understand the need for protecting sensitive data. Students identify multiple methods for protecting data and articulate the value and appropriateness for each method. Students are not expected to implement or explain the implementation of such technologies. For example, students could explain the importance of keeping passwords hidden, setting secure router administrator passwords, erasing a storage device before it is reused, and using firewalls to restrict access to private networks. Alternatively, students could explain the importance of two-factor authentication and HTTPS connections to ensure secure data transmission.
Standard Identifier: 6-8.NI.6
Grade Range:
6–8
Concept:
Networks & the Internet
Subconcept:
Cybersecurity
Practice(s):
Developing and Using Abstractions (4.4)
Standard:
Apply multiple methods of information protection to model the secure transmission of information.
Descriptive Statement:
Digital information is protected using a variety of cryptographic techniques. Cryptography is essential to many models of cybersecurity. At its core, cryptography has a mathematical foundation. Cryptographic encryption can be as simple as letter substitution or as complicated as modern methods used to secure networks and the Internet. Students encode and decode messages using encryption methods, and explore different levels of complexity used to hide or secure information. For example, students could identify methods of secret communication used during the Revolutionary War (e.g., ciphers, secret codes, invisible ink, hidden letters) and then secure their own methods such as substitution ciphers or steganography (i.e., hiding messages inside a picture or other data) to compose a message from either the Continental Army or British Army. (HSS.8.1) Alternatively, students could explore functions and inverse functions for encryption and decryption and consider functions that are complex enough to keep data secure from their peers. (CA CCSS for Mathematics 8.F.1)
Apply multiple methods of information protection to model the secure transmission of information.
Descriptive Statement:
Digital information is protected using a variety of cryptographic techniques. Cryptography is essential to many models of cybersecurity. At its core, cryptography has a mathematical foundation. Cryptographic encryption can be as simple as letter substitution or as complicated as modern methods used to secure networks and the Internet. Students encode and decode messages using encryption methods, and explore different levels of complexity used to hide or secure information. For example, students could identify methods of secret communication used during the Revolutionary War (e.g., ciphers, secret codes, invisible ink, hidden letters) and then secure their own methods such as substitution ciphers or steganography (i.e., hiding messages inside a picture or other data) to compose a message from either the Continental Army or British Army. (HSS.8.1) Alternatively, students could explore functions and inverse functions for encryption and decryption and consider functions that are complex enough to keep data secure from their peers. (CA CCSS for Mathematics 8.F.1)
Showing 11 - 20 of 35 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881