Computer Science Standards
Results
Showing 21 - 28 of 28 Standards
Standard Identifier: 9-12.NI.5
Grade Range:
9–12
Concept:
Networks & the Internet
Subconcept:
Network Communication & Organization
Practice(s):
Communicating About Computing (7.2)
Standard:
Describe the design characteristics of the Internet.
Descriptive Statement:
The Internet connects devices and networks all over the world. Large-scale coordination occurs among many different machines across multiple paths every time a web page is opened or an image is viewed online. Through the domain name system (DNS), devices on the Internet can look up Internet Protocol (IP) addresses, allowing end-to-end communication between devices. The design decisions that direct the coordination among systems composing the Internet also allow for scalability and reliability. Students factor historical, cultural, and economic decisions in their explanations of the Internet. For example, students could explain how hierarchy in the DNS supports scalability and reliability. Alternatively, students could describe how the redundancy of routing between two nodes on the Internet increases reliability and scales as the Internet grows.
Describe the design characteristics of the Internet.
Descriptive Statement:
The Internet connects devices and networks all over the world. Large-scale coordination occurs among many different machines across multiple paths every time a web page is opened or an image is viewed online. Through the domain name system (DNS), devices on the Internet can look up Internet Protocol (IP) addresses, allowing end-to-end communication between devices. The design decisions that direct the coordination among systems composing the Internet also allow for scalability and reliability. Students factor historical, cultural, and economic decisions in their explanations of the Internet. For example, students could explain how hierarchy in the DNS supports scalability and reliability. Alternatively, students could describe how the redundancy of routing between two nodes on the Internet increases reliability and scales as the Internet grows.
Standard Identifier: 9-12S.AP.14
Grade Range:
9–12 Specialty
Concept:
Algorithms & Programming
Subconcept:
Variables
Practice(s):
Developing and Using Abstractions (4.2)
Standard:
Compare and contrast fundamental data structures and their uses.
Descriptive Statement:
Data structures are designed to provide different ways of storing and manipulating data sets to optimize various aspects of storage or runtime performance. Choice of data structures is made based on expected data characteristics and expected program functions. Students = compare and contrast how basic functions (e.g.., insertion, deletion, and modification) would differ for common data structures including lists, arrays, stacks, and queues. For example, students could draw a diagram of how different data structures change when items are added, deleted, or modified. They could explain tradeoffs in storage and efficiency issues. Alternatively, when presented with a description of a program and the functions it would be most likely to be running, students could list pros and cons for a specific data structure use in that scenario.
Compare and contrast fundamental data structures and their uses.
Descriptive Statement:
Data structures are designed to provide different ways of storing and manipulating data sets to optimize various aspects of storage or runtime performance. Choice of data structures is made based on expected data characteristics and expected program functions. Students = compare and contrast how basic functions (e.g.., insertion, deletion, and modification) would differ for common data structures including lists, arrays, stacks, and queues. For example, students could draw a diagram of how different data structures change when items are added, deleted, or modified. They could explain tradeoffs in storage and efficiency issues. Alternatively, when presented with a description of a program and the functions it would be most likely to be running, students could list pros and cons for a specific data structure use in that scenario.
Standard Identifier: 9-12S.AP.15
Grade Range:
9–12 Specialty
Concept:
Algorithms & Programming
Subconcept:
Control
Practice(s):
Recognizing and Defining Computational Problems, Communicating About Computing (3.2, 7.2)
Standard:
Demonstrate the flow of execution of a recursive algorithm.
Descriptive Statement:
Recursion is a powerful problem-solving approach where the problem solution is built on solutions of smaller instances of the same problem. A base case, which returns a result without referencing itself, must be defined, otherwise infinite recursion will occur. Students represent a sequence of calls to a recursive algorithm and show how the process resolves to a solution. For example, students could draw a diagram to illustrate flow of execution by keeping track of parameter and returned values for each recursive call. Alternatively, students could create a video showing the passing of arguments as the recursive algorithm runs.
Demonstrate the flow of execution of a recursive algorithm.
Descriptive Statement:
Recursion is a powerful problem-solving approach where the problem solution is built on solutions of smaller instances of the same problem. A base case, which returns a result without referencing itself, must be defined, otherwise infinite recursion will occur. Students represent a sequence of calls to a recursive algorithm and show how the process resolves to a solution. For example, students could draw a diagram to illustrate flow of execution by keeping track of parameter and returned values for each recursive call. Alternatively, students could create a video showing the passing of arguments as the recursive algorithm runs.
Standard Identifier: 9-12S.AP.16
Grade Range:
9–12 Specialty
Concept:
Algorithms & Programming
Subconcept:
Modularity
Practice(s):
Recognizing and Defining Computational Problems, Developing and Using Abstractions (3.2, 4.2)
Standard:
Analyze a large-scale computational problem and identify generalizable patterns or problem components that can be applied to a solution.
Descriptive Statement:
As students encounter complex, real-world problems that span multiple disciplines or social systems, they need to be able to decompose problems and apply already developed code as part of their solutions. Students decompose complex problems into manageable subproblems that could potentially be solved with programs or procedures that can be reused or already exist. For example, in analyzing an Internet radio app, students could identify that users need to create an account and enter a password. They could identify a common application programming interface (API) for checking and displaying password strength. Additionally, students could recognize that the songs would need to be sorted by the time last played in order to display the most recently played songs and identify a common API for sorting dates from most to least recent. Alternatively, in analyzing the problem of tracking medical treatment in a hospital, students could recognize that patient records need to be stored in a database and identify a database solution to support quick access and modification of patient records. Additionally, they could recognize that records in the database need to be stored securely and could identify an encryption API to support the desired level of privacy.
Analyze a large-scale computational problem and identify generalizable patterns or problem components that can be applied to a solution.
Descriptive Statement:
As students encounter complex, real-world problems that span multiple disciplines or social systems, they need to be able to decompose problems and apply already developed code as part of their solutions. Students decompose complex problems into manageable subproblems that could potentially be solved with programs or procedures that can be reused or already exist. For example, in analyzing an Internet radio app, students could identify that users need to create an account and enter a password. They could identify a common application programming interface (API) for checking and displaying password strength. Additionally, students could recognize that the songs would need to be sorted by the time last played in order to display the most recently played songs and identify a common API for sorting dates from most to least recent. Alternatively, in analyzing the problem of tracking medical treatment in a hospital, students could recognize that patient records need to be stored in a database and identify a database solution to support quick access and modification of patient records. Additionally, they could recognize that records in the database need to be stored securely and could identify an encryption API to support the desired level of privacy.
Standard Identifier: 9-12S.AP.17
Grade Range:
9–12 Specialty
Concept:
Algorithms & Programming
Subconcept:
Modularity
Practice(s):
Developing and Using Abstractions, Creating Computational Artifacts (4.3, 5.2)
Standard:
Construct solutions to problems using student-created components, such as procedures, modules, and/or objects.
Descriptive Statement:
Programmers often address complex tasks through design and decomposition using procedures and/or modules. In object-oriented programming languages, classes can support this decomposition. Students create a computational artifact that solves a problem through use of procedures, modules, and/or objects. This problem should be of sufficient complexity to benefit from decomposition and/or use of objects. For example, students could write a flashcard program in which each card is able to show both the question and answer and record user history. Alternatively, students could create a simulation of an ecosystem in which sprites carry out behaviors, such as consuming resources.
Construct solutions to problems using student-created components, such as procedures, modules, and/or objects.
Descriptive Statement:
Programmers often address complex tasks through design and decomposition using procedures and/or modules. In object-oriented programming languages, classes can support this decomposition. Students create a computational artifact that solves a problem through use of procedures, modules, and/or objects. This problem should be of sufficient complexity to benefit from decomposition and/or use of objects. For example, students could write a flashcard program in which each card is able to show both the question and answer and record user history. Alternatively, students could create a simulation of an ecosystem in which sprites carry out behaviors, such as consuming resources.
Standard Identifier: 9-12S.AP.18
Grade Range:
9–12 Specialty
Concept:
Algorithms & Programming
Subconcept:
Modularity
Practice(s):
Developing and Using Abstractions, Creating Computational Artifacts, Testing and Refining Computational Artifacts (4.2, 5.3, 6.2)
Standard:
Demonstrate code reuse by creating programming solutions using libraries and APIs.
Descriptive Statement:
Code reuse is critical both for managing complexity in modern programs, but also in increasing programming efficiency and reliability by having programmers reuse code that has been highly vetted and tested. Software libraries allow developers to integrate common and often complex functionality without having to reimplement that functionality from scratch. Students identify, evaluate, and select appropriate application programming interfaces (APIs) from software libraries to use with a given language and operating system. They appropriately use resources such as technical documentation, online forums, and developer communities to learn about libraries and troubleshoot problems with APIs that they have chosen. For example, students could import charting and graphing modules to display data sets, adopt an online service that provides cloud storage and retrieval for a database used in a multiplayer game, or import location services into an app that identifies points of interest on a map. Libraries of APIs can be student-created or publicly available (e.g., common graphics libraries or map/navigation APIs).
Demonstrate code reuse by creating programming solutions using libraries and APIs.
Descriptive Statement:
Code reuse is critical both for managing complexity in modern programs, but also in increasing programming efficiency and reliability by having programmers reuse code that has been highly vetted and tested. Software libraries allow developers to integrate common and often complex functionality without having to reimplement that functionality from scratch. Students identify, evaluate, and select appropriate application programming interfaces (APIs) from software libraries to use with a given language and operating system. They appropriately use resources such as technical documentation, online forums, and developer communities to learn about libraries and troubleshoot problems with APIs that they have chosen. For example, students could import charting and graphing modules to display data sets, adopt an online service that provides cloud storage and retrieval for a database used in a multiplayer game, or import location services into an app that identifies points of interest on a map. Libraries of APIs can be student-created or publicly available (e.g., common graphics libraries or map/navigation APIs).
Standard Identifier: 9-12S.NI.3
Grade Range:
9–12 Specialty
Concept:
Networks & the Internet
Subconcept:
Network Communication & Organization
Practice(s):
Developing and Using Abstractions (4.4)
Standard:
Examine the scalability and reliability of networks, by describing the relationship between routers, switches, servers, topology, and addressing.
Descriptive Statement:
Choice of network topology is determined, in part, by how many devices can be supported and the character of communication needs between devices. Each device is assigned an address that uniquely identifies it on the network. Routers function by comparing addresses to determine how information on the network should reach its desgination. Switches compare addresses to determine which computers will receive information. Students explore and explain how network performance degrades when various factors affect the network. For example, students could use online network simulators to describe how network performance changes when the number of devices increases. Alternatively, students could visualize and describe changes to the distribution of network traffic when a router on the network fails.
Examine the scalability and reliability of networks, by describing the relationship between routers, switches, servers, topology, and addressing.
Descriptive Statement:
Choice of network topology is determined, in part, by how many devices can be supported and the character of communication needs between devices. Each device is assigned an address that uniquely identifies it on the network. Routers function by comparing addresses to determine how information on the network should reach its desgination. Switches compare addresses to determine which computers will receive information. Students explore and explain how network performance degrades when various factors affect the network. For example, students could use online network simulators to describe how network performance changes when the number of devices increases. Alternatively, students could visualize and describe changes to the distribution of network traffic when a router on the network fails.
Standard Identifier: 9-12S.NI.4
Grade Range:
9–12 Specialty
Concept:
Networks & the Internet
Subconcept:
Network Communication & Organization
Practice(s):
Communicating About Computing (7.2)
Standard:
Explain how the characteristics of the Internet influence the systems developed on it.
Descriptive Statement:
The design of the Internet includes hierarchy and redundancy to help it scale reliably. An end-to-end architecture means that key functions are placed at endpoints in the network (i.e., an Internet user's computer and the server hosting a website) rather than in the middle of the network. Open standards for transmitting information across the Internet help fuel its growth. This design philosophy impacts systems and technologies that integrate with the Internet. Students explain how Internet-based systems depend on these characteristics. For example, students could explain how having common, standard protocols enable products and services from different developers to communicate. Alternatively, students could describe how the end-to-end architecture and redundancy in routing enables Internet users to access information and services even if part of the network is down; the information can still be routed from one end to another through a different path.
Explain how the characteristics of the Internet influence the systems developed on it.
Descriptive Statement:
The design of the Internet includes hierarchy and redundancy to help it scale reliably. An end-to-end architecture means that key functions are placed at endpoints in the network (i.e., an Internet user's computer and the server hosting a website) rather than in the middle of the network. Open standards for transmitting information across the Internet help fuel its growth. This design philosophy impacts systems and technologies that integrate with the Internet. Students explain how Internet-based systems depend on these characteristics. For example, students could explain how having common, standard protocols enable products and services from different developers to communicate. Alternatively, students could describe how the end-to-end architecture and redundancy in routing enables Internet users to access information and services even if part of the network is down; the information can still be routed from one end to another through a different path.
Showing 21 - 28 of 28 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881