Skip to main content
California Department of Education Logo

Computer Science Standards




Results


Showing 21 - 30 of 50 Standards

Standard Identifier: 6-8.CS.3

Grade Range: 6–8
Concept: Computing Systems
Subconcept: Troubleshooting
Practice(s): Testing and Refining Computational Artifacts (6.2)

Standard:
Systematically apply troubleshooting strategies to identify and resolve hardware and software problems in computing systems.

Descriptive Statement:
When problems occur within computing systems, it is important to take a structured, step-by-step approach to effectively solve the problem and ensure that potential solutions are not overlooked. Examples of troubleshooting strategies include following a troubleshooting flow diagram, making changes to software to see if hardware will work, checking connections and settings, and swapping in working components. Since a computing device may interact with interconnected devices within a system, problems may not be due to the specific computing device itself but to devices connected to it. For example, students could work through a checklist of solutions for connectivity problems in a lab of computers connected wirelessly or through physical cables. They could also search for technical information online and engage in technical reading to create troubleshooting documents that they then apply. (CA CCSS for ELA/Literacy RST.6-8.10) Alternatively, students could explore and utilize operating system tools to reset a computer's default language to English. Additionally, students could swap out an externally-controlled sensor giving fluctuating readings with a new sensor to check whether there is a hardware problem.

Standard Identifier: 6-8.IC.20

Grade Range: 6–8
Concept: Impacts of Computing
Subconcept: Culture
Practice(s): Communicating About Computing (7.2)

Standard:
Compare tradeoffs associated with computing technologies that affect people's everyday activities and career options.

Descriptive Statement:
Advancements in computer technology are neither wholly positive nor negative. However, the ways that people use computing technologies have tradeoffs. Students consider current events related to broad ideas, including privacy, communication, and automation. For example, students could compare and contrast the impacts of computing technologies with the impacts of other systems developed throughout history such as the Pony Express and US Postal System. (HSS.7.8.4) Alternatively, students could identify tradeoffs for both personal and professional uses of a variety of computing technologies. For instance, driverless cars can increase convenience and reduce accidents, but they may be susceptible to hacking. The emerging industry will reduce the number of taxi and shared-ride drivers, but may create more software engineering and cybersecurity jobs.

Standard Identifier: 6-8.IC.21

Grade Range: 6–8
Concept: Impacts of Computing
Subconcept: Culture
Practice(s): Fostering an Inclusive Computing Culture (1.2)

Standard:
Discuss issues of bias and accessibility in the design of existing technologies.

Descriptive Statement:
Computing technologies should support users of many backgrounds and abilities. In order to maximize accessiblity, these differences need to be addressed by examining diverse populations. With the teacher's guidance, students test and discuss the usability of various technology tools, such as apps, games, and devices. For example, students could discuss the impacts of facial recognition software that works better for lighter skin tones and recognize that the software was likely developed with a homogeneous testing group. Students could then discuss how accessibility could be improved by sampling a more diverse population. (CA CCSS for ELA/Literacy SL.6.1, SL.7.1, SL.8.1)

Standard Identifier: 6-8.IC.22

Grade Range: 6–8
Concept: Impacts of Computing
Subconcept: Social Interactions
Practice(s): Collaborating Around Computing, Creating Computational Artifacts (2.4, 5.2)

Standard:
Collaborate with many contributors when creating a computational artifact.

Descriptive Statement:
Users have diverse sets of experiences, needs, and wants. These need to be understood and integrated into the design of computational artifacts. Students use applications that enable crowdsourcing to gather services, ideas, or content from a large group of people. At this level, crowdsourcing can be done at the local level (e.g., classroom, school, or neighborhood) and/or global level (e.g., age-appropriate online communities). For example, a group of students could use electronic surveys to solicit input from their neighborhood regarding an important social or political issue. They could collaborate with a community artist to combine animations and create a digital community collage informing the public about various points of view regarding the topic. (VAPA Visual Art 8.5.2, 8.5.4)

Standard Identifier: 6-8.NI.4

Grade Range: 6–8
Concept: Networks & the Internet
Subconcept: Network Communication & Organization
Practice(s): Developing and Using Abstractions (4.4)

Standard:
Model the role of protocols in transmitting data across networks and the Internet.

Descriptive Statement:
Protocols are rules that define how messages between computers are sent. They determine how quickly and securely information is transmitted across networks, as well as how to handle errors in transmission. Students model how data is sent using protocols to choose the fastest path and to deal with missing information. Knowledge of the details of how specific protocols work is not expected. The priority at this grade level is understanding the purpose of protocols and how they enable efficient and errorless communication. For example, students could devise a plan for sending data representing a textual message and devise a plan for resending lost information. Alternatively, students could devise a plan for sending data to represent a picture, and devise a plan for interpreting the image when pieces of the data are missing. Additionally, students could model the speed of sending messages by Bluetooth, Wi-Fi, or cellular networks and describe ways errors in data transmission can be detected and dealt with.

Standard Identifier: 9-12.AP.12

Grade Range: 9–12
Concept: Algorithms & Programming
Subconcept: Algorithms
Practice(s): Developing and Using Abstractions, Creating Computational Artifacts (4.2, 5.1)

Standard:
Design algorithms to solve computational problems using a combination of original and existing algorithms.

Descriptive Statement:
Knowledge of common algorithms improves how people develop software, secure data, and store information. Some algorithms may be easier to implement in a particular programming language, work faster, require less memory to store data, and be applicable in a wider variety of situations than other algorithms. Algorithms used to search and sort data are common in a variety of software applications. For example, students could design an algorithm to calculate and display various sports statistics and use common sorting or mathematical algorithms (e.g., average) in the design of the overall algorithm. Alternatively, students could design an algorithm to implement a game and use existing randomization algorithms to place pieces randomly in starting positions or to control the "roll" of a dice or selection of a "card" from a deck.

Standard Identifier: 9-12.AP.16

Grade Range: 9–12
Concept: Algorithms & Programming
Subconcept: Modularity
Practice(s): Recognizing and Defining Computational Problems (3.2)

Standard:
Decompose problems into smaller subproblems through systematic analysis, using constructs such as procedures, modules, and/or classes.

Descriptive Statement:
Decomposition enables solutions to complex problems to be designed and implemented as more manageable subproblems. Students decompose a given problem into subproblems that can be solved using existing functionalities, or new functionalities that they design and implement. For example, students could design a program for supporting soccer coaches in analyzing their teams' statistics. They decompose the problem in terms of managing input, analysis, and output. They decompose the data organization by designing what data will be stored per player, per game, and per team. Team players may be stored as a collection. Data per team player may include: number of shots, misses, saves, assists, penalty kicks, blocks, and corner kicks. Students design methods for supporting various statistical analyses and display options. Students design output formats for individual players or coaches.

Standard Identifier: 9-12.AP.17

Grade Range: 9–12
Concept: Algorithms & Programming
Subconcept: Modularity
Practice(s): Developing and Using Abstractions, Creating Computational Artifacts (4.3, 5.2)

Standard:
Create computational artifacts using modular design.

Descriptive Statement:
Computational artifacts are created by combining and modifying existing computational artifacts and/or by developing new artifacts. To reduce complexity, large programs can be designed as systems of interacting modules, each with a specific role, coordinating for a common overall purpose. Students should create computational artifacts with interacting procedures, modules, and/or libraries. For example, students could incorporate a physics library into an animation of bouncing balls. Alternatively, students could integrate open-source JavaScript libraries to expand the functionality of a web application. Additionally, students could create their own game to teach Spanish vocabulary words using their own modular design (e.g., including methods to: control scoring, manage wordlists, manage access to different game levels, take input from the user, etc.).

Standard Identifier: 9-12.CS.2

Grade Range: 9–12
Concept: Computing Systems
Subconcept: Hardware & Software
Practice(s): Developing and Using Abstractions (4.1)

Standard:
Compare levels of abstraction and interactions between application software, system software, and hardware.

Descriptive Statement:
At its most basic level, a computer is composed of physical hardware on which software runs. Multiple layers of software are built upon various layers of hardware. Layers manage interactions and complexity in the computing system. System software manages a computing device's resources so that software can interact with hardware. Application software communicates with the user and the system software to accomplish its purpose. Students compare and describe how application software, system software, and hardware interact. For example, students could compare how various levels of hardware and software interact when a picture is to be taken on a smartphone. Systems software provides low-level commands to operate the camera hardware, but the application software interacts with system software at a higher level by requesting a common image file format (e.g., .png) that the system software provides.

Standard Identifier: 9-12.CS.3

Grade Range: 9–12
Concept: Computing Systems
Subconcept: Troubleshooting
Practice(s): Testing and Refining Computational Artifacts (6.2)

Standard:
Develop guidelines that convey systematic troubleshooting strategies that others can use to identify and fix errors.

Descriptive Statement:
Troubleshooting complex problems involves the use of multiple sources when researching, evaluating, and implementing potential solutions. Troubleshooting also relies on experience, such as when people recognize that a problem is similar to one they have seen before and adapt solutions that have worked in the past. For example, students could create a list of troubleshooting strategies to debug network connectivity problems such as checking hardware and software status and settings, rebooting devices, and checking security settings. Alternatively, students could create troubleshooting guidelines for help desk employees based on commonly observed problems (e.g., problems connecting a new device to the computer, problems printing from a computer to a network printer).

Showing 21 - 30 of 50 Standards


Questions: Curriculum Frameworks and Instructional Resources Division | CFIRD@cde.ca.gov | 916-319-0881