Computer Science Standards
Results
Showing 1 - 10 of 25 Standards
Standard Identifier: K-2.AP.13
Grade Range:
K–2
Concept:
Algorithms & Programming
Subconcept:
Modularity
Practice(s):
Recognizing and Defining Computational Problems (3.2)
Standard:
Decompose the steps needed to solve a problem into a sequence of instructions.
Descriptive Statement:
Decomposition is the act of breaking down tasks into simpler tasks. For example, students could break down the steps needed to make a peanut butter and jelly sandwich, to brush their teeth, to draw a shape, to move a character across the screen, or to solve a level of a coding app. In a visual programming environment, students could break down the steps needed to draw a shape. (CA CCSS for Mathematics K.G.5, 1.G.1, 2.G.1) Alternatively, students could decompose the planning of a birthday party into tasks such as: 1) Decide when and where it should be, 2) List friends and family to invite, 3) Send the invitations, 4) Bake a cake, 5) Decorate, etc.
Decompose the steps needed to solve a problem into a sequence of instructions.
Descriptive Statement:
Decomposition is the act of breaking down tasks into simpler tasks. For example, students could break down the steps needed to make a peanut butter and jelly sandwich, to brush their teeth, to draw a shape, to move a character across the screen, or to solve a level of a coding app. In a visual programming environment, students could break down the steps needed to draw a shape. (CA CCSS for Mathematics K.G.5, 1.G.1, 2.G.1) Alternatively, students could decompose the planning of a birthday party into tasks such as: 1) Decide when and where it should be, 2) List friends and family to invite, 3) Send the invitations, 4) Bake a cake, 5) Decorate, etc.
Standard Identifier: K-2.CS.2
Grade Range:
K–2
Concept:
Computing Systems
Subconcept:
Hardware & Software
Practice(s):
Communicating About Computing (7.2)
Standard:
Explain the functions of common hardware and software components of computing systems.
Descriptive Statement:
A computing system is composed of hardware and software. Hardware includes the physical components of a computer system. Software provides instructions for the system. These instructions are represented in a form that a computer can understand and are designed for specific purposes. Students identify and describe the function of hardware, such as desktop computers, laptop computers, tablet devices, monitors, keyboards, mice, trackpads, microphones, and printers. Students also identify and describe common software applications such as web browsers, games, and word processors. For example, students could create drawings of a computing system and label its major components with appropriate terminology. Students could then explain the function of each component. (VAPA Visual Arts 2 5.0) (CA CCSS for ELA/Literacy SL.K.5, SL.K.6, SL.1.5, SL.1.6, SL.2.5, SL.2.6) Alternatively, students could each be assigned a component of a computing system and arrange their bodies to represent the system. Students could then describe how their assigned component functions within the system. (P.E.K.1, 1.1)
Explain the functions of common hardware and software components of computing systems.
Descriptive Statement:
A computing system is composed of hardware and software. Hardware includes the physical components of a computer system. Software provides instructions for the system. These instructions are represented in a form that a computer can understand and are designed for specific purposes. Students identify and describe the function of hardware, such as desktop computers, laptop computers, tablet devices, monitors, keyboards, mice, trackpads, microphones, and printers. Students also identify and describe common software applications such as web browsers, games, and word processors. For example, students could create drawings of a computing system and label its major components with appropriate terminology. Students could then explain the function of each component. (VAPA Visual Arts 2 5.0) (CA CCSS for ELA/Literacy SL.K.5, SL.K.6, SL.1.5, SL.1.6, SL.2.5, SL.2.6) Alternatively, students could each be assigned a component of a computing system and arrange their bodies to represent the system. Students could then describe how their assigned component functions within the system. (P.E.K.1, 1.1)
Standard Identifier: K-2.NI.5
Grade Range:
K–2
Concept:
Networks & the Internet
Subconcept:
Cybersecurity
Practice(s):
Communicating About Computing (7.2)
Standard:
Explain why people use passwords.
Descriptive Statement:
Passwords protect information from unwanted use by others. When creating passwords, people often use patterns of familiar numbers and text to more easily remember their passwords. However, this may make the passwords weaker. Knowledge about the importance of passwords is an essential first step in learning about cybersecurity. Students explain that strong passwords are needed to protect devices and information from unwanted use. For example, students could play a game of guessing a three-character code. In one version of the game, the characters are only numbers. In the second version, characters are numbers or letters. Students describe why it would take longer to guess the correct code in the second case. Alternatively, students could engage in a collaborative discussion regarding passwords and their importance. Students may follow-up the discussion by exploring strong password components (combination of letters, numbers, and characters), creating their own passwords, and writing opinion pieces indicating reasons their passwords are strong. (CA CCSS for ELA/Literacy SL.K.1, SL.1.1, SL 2.1, W.1.1, W.2.1)
Explain why people use passwords.
Descriptive Statement:
Passwords protect information from unwanted use by others. When creating passwords, people often use patterns of familiar numbers and text to more easily remember their passwords. However, this may make the passwords weaker. Knowledge about the importance of passwords is an essential first step in learning about cybersecurity. Students explain that strong passwords are needed to protect devices and information from unwanted use. For example, students could play a game of guessing a three-character code. In one version of the game, the characters are only numbers. In the second version, characters are numbers or letters. Students describe why it would take longer to guess the correct code in the second case. Alternatively, students could engage in a collaborative discussion regarding passwords and their importance. Students may follow-up the discussion by exploring strong password components (combination of letters, numbers, and characters), creating their own passwords, and writing opinion pieces indicating reasons their passwords are strong. (CA CCSS for ELA/Literacy SL.K.1, SL.1.1, SL 2.1, W.1.1, W.2.1)
Standard Identifier: K-2.NI.6
Grade Range:
K–2
Concept:
Networks & the Internet
Subconcept:
Cybersecurity
Practice(s):
Developing and Using Abstractions (4.4)
Standard:
Create patterns to communicate a message.
Descriptive Statement:
Connecting devices to a network or the Internet provides great benefit, but care must be taken to protect devices and information from unauthorized access. Messages can be protected by using secret languages or codes. Patterns help to ensure that the intended recipient can decode the message. Students create a pattern that can be decoded and translated into a message. For example, students could use a table to associate each text character with a number. Then, they could select a combination of text characters and use mathematical functions (e.g., simple arithmetic operations) to transform the numbers associated with the characters into a secret message. Using inverse functions, a peer could translate the secret message back into its original form. (CA CCSS for Mathematics 2.OA.A.1, 2.OA.B.2) Alternatively, students could use icons or invented symbols to represent patterns of beat, rhythm, or pitch to decode a musical phrase. (VAPA Music K.1.1, 1.1.1, 2.1.1, 2.2.2)
Create patterns to communicate a message.
Descriptive Statement:
Connecting devices to a network or the Internet provides great benefit, but care must be taken to protect devices and information from unauthorized access. Messages can be protected by using secret languages or codes. Patterns help to ensure that the intended recipient can decode the message. Students create a pattern that can be decoded and translated into a message. For example, students could use a table to associate each text character with a number. Then, they could select a combination of text characters and use mathematical functions (e.g., simple arithmetic operations) to transform the numbers associated with the characters into a secret message. Using inverse functions, a peer could translate the secret message back into its original form. (CA CCSS for Mathematics 2.OA.A.1, 2.OA.B.2) Alternatively, students could use icons or invented symbols to represent patterns of beat, rhythm, or pitch to decode a musical phrase. (VAPA Music K.1.1, 1.1.1, 2.1.1, 2.2.2)
Standard Identifier: 3-5.AP.13
Grade Range:
3–5
Concept:
Algorithms & Programming
Subconcept:
Modularity
Practice(s):
Recognizing and Defining Computational Problems (3.2)
Standard:
Decompose problems into smaller, manageable tasks which may themselves be decomposed.
Descriptive Statement:
Decomposition is the act of breaking down tasks into simpler tasks. This manages complexity in the problem solving and program development process. For example, students could create an animation to represent a story they have written. Students write a story and then break it down into different scenes. For each scene, they would select a background, place characters, and program actions in that scene. (CA CCSS for ELA/Literacy W.3.3, W.4.3, W.5.3) Alternatively, students could create a program to allow classmates to present data collected in an experiment. For example, if students collected rain gauge data once per week for 3 months, students could break down the program tasks: 1) ask the user to input 12 weeks' worth of data, 2) process the data (e.g., add the first four entries to calculate the rain amount for month 1, convert to metric system measurements), and 3) direct the creation or resizing of objects (e.g., one rectangular chart bar for each month) to represent the total number of rainfall for that month. (CA NGSS: 3-ETS-1-2) (CA CCSS for Mathematics 3.MD.2)
Decompose problems into smaller, manageable tasks which may themselves be decomposed.
Descriptive Statement:
Decomposition is the act of breaking down tasks into simpler tasks. This manages complexity in the problem solving and program development process. For example, students could create an animation to represent a story they have written. Students write a story and then break it down into different scenes. For each scene, they would select a background, place characters, and program actions in that scene. (CA CCSS for ELA/Literacy W.3.3, W.4.3, W.5.3) Alternatively, students could create a program to allow classmates to present data collected in an experiment. For example, if students collected rain gauge data once per week for 3 months, students could break down the program tasks: 1) ask the user to input 12 weeks' worth of data, 2) process the data (e.g., add the first four entries to calculate the rain amount for month 1, convert to metric system measurements), and 3) direct the creation or resizing of objects (e.g., one rectangular chart bar for each month) to represent the total number of rainfall for that month. (CA NGSS: 3-ETS-1-2) (CA CCSS for Mathematics 3.MD.2)
Standard Identifier: 3-5.AP.14
Grade Range:
3–5
Concept:
Algorithms & Programming
Subconcept:
Modularity
Practice(s):
Developing and Using Abstractions, Creating Computational Artifacts (4.2, 5.3)
Standard:
Create programs by incorporating smaller portions of existing programs, to develop something new or add more advanced features.
Descriptive Statement:
Programs can be broken down into smaller parts, which can be incorporated into new or existing programs. Students incorporate predefined functions into their original designs. At this level, students do not need to understand all of the underlying implementation details of the abstractions that they use. For example, students could use code from a ping pong animation to make a ball bounce in a new basketball game. They could also incorporate code from a single-player basketball game to create a two-player game with slightly different rules. Alternatively, students could remix an animated story and add their own conclusion and/or additional dialogue. (CA CCSS for ELA/Literacy W.3.3.B, W.3.3.D, W.4.3.B, W.4.3.E, W.5.3.B, W.5.3.E) Additionally, when creating a game that occurs on the moon or planets, students could incorporate and modify code that simulates gravity on Earth. They could modify the strength of the gravitational force based on the mass of the planet or moon. (CA NGSS: 5-PS2-1)
Create programs by incorporating smaller portions of existing programs, to develop something new or add more advanced features.
Descriptive Statement:
Programs can be broken down into smaller parts, which can be incorporated into new or existing programs. Students incorporate predefined functions into their original designs. At this level, students do not need to understand all of the underlying implementation details of the abstractions that they use. For example, students could use code from a ping pong animation to make a ball bounce in a new basketball game. They could also incorporate code from a single-player basketball game to create a two-player game with slightly different rules. Alternatively, students could remix an animated story and add their own conclusion and/or additional dialogue. (CA CCSS for ELA/Literacy W.3.3.B, W.3.3.D, W.4.3.B, W.4.3.E, W.5.3.B, W.5.3.E) Additionally, when creating a game that occurs on the moon or planets, students could incorporate and modify code that simulates gravity on Earth. They could modify the strength of the gravitational force based on the mass of the planet or moon. (CA NGSS: 5-PS2-1)
Standard Identifier: 3-5.CS.2
Grade Range:
3–5
Concept:
Computing Systems
Subconcept:
Hardware & Software
Practice(s):
Developing and Using Abstractions (4.4)
Standard:
Demonstrate how computer hardware and software work together as a system to accomplish tasks.
Descriptive Statement:
Hardware and software are both needed to accomplish tasks with a computing device. Students create a model to illustrate ways in which hardware and software work as a system. Students could draw a model on paper or in a drawing program, program an animation to demonstrate it, or demonstrate it by acting this out in some way. At this level, a model should only include the basic elements of a computer system, such as input, output, processor, sensors, and storage. For example, students could create a diagram or flow chart to indicate how a keyboard, desktop computer, monitor, and word processing software interact with each other. The keyboard (hardware) detects a key press, which the operating system and word processing application (software) displays as a new character that has been inserted into the document and is visible through the monitor (hardware). Students could also create a model by acting out the interactions of these different hardware and software components. Alternatively, when describing that animals and people receive different types of information through their senses, process the information in their brain, and respond to the information in different ways, students could compare this to the interaction of how the information traveling through a computer from mouse to processor are similar to signals sent through the nervous system telling our brain about the world around us to prompt responses. (CA NGSS: 4-LS1-2)
Demonstrate how computer hardware and software work together as a system to accomplish tasks.
Descriptive Statement:
Hardware and software are both needed to accomplish tasks with a computing device. Students create a model to illustrate ways in which hardware and software work as a system. Students could draw a model on paper or in a drawing program, program an animation to demonstrate it, or demonstrate it by acting this out in some way. At this level, a model should only include the basic elements of a computer system, such as input, output, processor, sensors, and storage. For example, students could create a diagram or flow chart to indicate how a keyboard, desktop computer, monitor, and word processing software interact with each other. The keyboard (hardware) detects a key press, which the operating system and word processing application (software) displays as a new character that has been inserted into the document and is visible through the monitor (hardware). Students could also create a model by acting out the interactions of these different hardware and software components. Alternatively, when describing that animals and people receive different types of information through their senses, process the information in their brain, and respond to the information in different ways, students could compare this to the interaction of how the information traveling through a computer from mouse to processor are similar to signals sent through the nervous system telling our brain about the world around us to prompt responses. (CA NGSS: 4-LS1-2)
Standard Identifier: 3-5.NI.5
Grade Range:
3–5
Concept:
Networks & the Internet
Subconcept:
Cybersecurity
Practice(s):
Recognizing and Defining Computational Problems (3.1)
Standard:
Describe physical and digital security measures for protecting personal information.
Descriptive Statement:
Personal information can be protected physically and digitally. Cybersecurity is the protection from unauthorized use of electronic data, or the measures taken to achieve this. Students identify what personal information is and the reasons for protecting it. Students describe physical and digital approaches for protecting personal information such as using strong passwords and biometric scanners. For example, students could engage in a collaborative discussion orally or in writing regarding topics that relate to personal cybersecurity issues. Discussion topics could be based on current events related to cybersecurity or topics that are applicable to students, such as the necessity of backing up data to guard against loss, how to create strong passwords and the importance of not sharing passwords, or why we should keep operating systems updated and use anti-virus software to protect data and systems. Students could also discuss physical measures that can be used to protect data including biometric scanners, locked doors, and physical backups. (CA CCSS for ELA/Literacy SL.3.1, SL.4.1, SL.5.1)
Describe physical and digital security measures for protecting personal information.
Descriptive Statement:
Personal information can be protected physically and digitally. Cybersecurity is the protection from unauthorized use of electronic data, or the measures taken to achieve this. Students identify what personal information is and the reasons for protecting it. Students describe physical and digital approaches for protecting personal information such as using strong passwords and biometric scanners. For example, students could engage in a collaborative discussion orally or in writing regarding topics that relate to personal cybersecurity issues. Discussion topics could be based on current events related to cybersecurity or topics that are applicable to students, such as the necessity of backing up data to guard against loss, how to create strong passwords and the importance of not sharing passwords, or why we should keep operating systems updated and use anti-virus software to protect data and systems. Students could also discuss physical measures that can be used to protect data including biometric scanners, locked doors, and physical backups. (CA CCSS for ELA/Literacy SL.3.1, SL.4.1, SL.5.1)
Standard Identifier: 3-5.NI.6
Grade Range:
3–5
Concept:
Networks & the Internet
Subconcept:
Cybersecurity
Practice(s):
Developing and Using Abstractions (4.4)
Standard:
Create patterns to protect information from unauthorized access.
Descriptive Statement:
Encryption is the process of converting information or data into a code, especially to prevent unauthorized access. At this level, students use patterns as a code for encryption, to protect information. Patterns should be decodable to the party for whom the message is intended, but difficult or impossible for those with unauthorized access. For example, students could create encrypted messages via flashing a flashlight in Morse code. Other students could decode this established language even if it wasn't meant for them. To model the idea of protecting data, students should create their own variations on or changes to Morse code. This ensures that when a member of that group flashes a message only other members of their group can decode it, even if other students in the room can see it. (CA NGSS: 4-PS4-3) Alternatively, students could engage in a CS Unplugged activity that models public key encryption: One student puts a paper containing a written secret in a box, locks it with a padlock, and hands the box to a second student. Student 2 puts on a second padlock and hands it back. Student 1 removes her lock and hands the box to student 2 again. Student 2 removes his lock, opens the box, and has access to the secret that student 1 sent him. Because the box always contained at least one lock while in transit, an outside party never had the opportunity to see the message and it is protected.
Create patterns to protect information from unauthorized access.
Descriptive Statement:
Encryption is the process of converting information or data into a code, especially to prevent unauthorized access. At this level, students use patterns as a code for encryption, to protect information. Patterns should be decodable to the party for whom the message is intended, but difficult or impossible for those with unauthorized access. For example, students could create encrypted messages via flashing a flashlight in Morse code. Other students could decode this established language even if it wasn't meant for them. To model the idea of protecting data, students should create their own variations on or changes to Morse code. This ensures that when a member of that group flashes a message only other members of their group can decode it, even if other students in the room can see it. (CA NGSS: 4-PS4-3) Alternatively, students could engage in a CS Unplugged activity that models public key encryption: One student puts a paper containing a written secret in a box, locks it with a padlock, and hands the box to a second student. Student 2 puts on a second padlock and hands it back. Student 1 removes her lock and hands the box to student 2 again. Student 2 removes his lock, opens the box, and has access to the secret that student 1 sent him. Because the box always contained at least one lock while in transit, an outside party never had the opportunity to see the message and it is protected.
Standard Identifier: 6-8.AP.13
Grade Range:
6–8
Concept:
Algorithms & Programming
Subconcept:
Modularity
Practice(s):
Recognizing and Defining Computational Problems (3.2)
Standard:
Decompose problems and subproblems into parts to facilitate the design, implementation, and review of programs.
Descriptive Statement:
Decomposition facilitates program development by allowing students to focus on one piece at a time (e.g., getting input from the user, processing the data, and displaying the result to the user). Decomposition also enables different students to work on different parts at the same time. Students break down (decompose) problems into subproblems, which can be further broken down to smaller parts. Students could create an arcade game, with a title screen, a game screen, and a win/lose screen with an option to play the game again. To do this, students need to identify subproblems that accompany each screen (e.g., selecting an avatar goes in the title screen, events for controlling character action and scoring goes in the game screen, and displaying final and high score and asking whether to play again goes in the win/lose screen). Alternatively, students could decompose the problem of calculating and displaying class grades. Subproblems might include: accept input for students grades on various assignments, check for invalid grade entries, calculate per assignment averages, calculate per student averages, and display histograms of student scores for each assignment. (CA CCSS for Mathematics 6.RP.3c, 6.SP.4, 6.SP.5)
Decompose problems and subproblems into parts to facilitate the design, implementation, and review of programs.
Descriptive Statement:
Decomposition facilitates program development by allowing students to focus on one piece at a time (e.g., getting input from the user, processing the data, and displaying the result to the user). Decomposition also enables different students to work on different parts at the same time. Students break down (decompose) problems into subproblems, which can be further broken down to smaller parts. Students could create an arcade game, with a title screen, a game screen, and a win/lose screen with an option to play the game again. To do this, students need to identify subproblems that accompany each screen (e.g., selecting an avatar goes in the title screen, events for controlling character action and scoring goes in the game screen, and displaying final and high score and asking whether to play again goes in the win/lose screen). Alternatively, students could decompose the problem of calculating and displaying class grades. Subproblems might include: accept input for students grades on various assignments, check for invalid grade entries, calculate per assignment averages, calculate per student averages, and display histograms of student scores for each assignment. (CA CCSS for Mathematics 6.RP.3c, 6.SP.4, 6.SP.5)
Showing 1 - 10 of 25 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881