Skip to main content
California Department of Education Logo

Computer Science Standards




Results


Showing 1 - 10 of 39 Standards

Standard Identifier: K-2.AP.10

Grade Range: K–2
Concept: Algorithms & Programming
Subconcept: Algorithms
Practice(s): Recognizing and Defining Computational Problems, Developing and Using Abstractions (3.2, 4.4)

Standard:
Model daily processes by creating and following algorithms to complete tasks.

Descriptive Statement:
Algorithms are sequences of instructions that describe how to complete a specific task. Students create algorithms that reflect simple life tasks inside and outside of the classroom. For example, students could create algorithms to represent daily routines for getting ready for school, transitioning through center rotations, eating lunch, and putting away art materials. Students could then write a narrative sequence of events. (CA CCSS for ELA/Literacy W.K.3, W.1.3, W.2.3) Alternatively, students could create a game or a dance with a specific set of movements to reach an intentional goal or objective. (P.E K.2, 1.2, 2.2) Additionally, students could create a map of their neighborhood and give step-by-step directions of how they get to school. (HSS.K.4, 1.2, 2.2)

Standard Identifier: K-2.AP.14

Grade Range: K–2
Concept: Algorithms & Programming
Subconcept: Program Development
Practice(s): Creating Computational Artifacts, Communicating About Computing (5.1, 7.2)

Standard:
Develop plans that describe a program’s sequence of events, goals, and expected outcomes.

Descriptive Statement:
Creating a plan for what a program will do clarifies the steps that will be needed to create the program and can be used to check if a program runs as expected. Students create a planning document to illustrate their program's sequence of events, goals, and expected outcomes of what their program will do. Planning documents could include a story map, a storyboard, or a sequential graphic organizer, to illustrate their program's sequence of events, goals, and expected outcomes of what their program will do. Students at this level may complete the planning process with help from the teacher. For example, students could create a storyboard or timeline that represents a family's history, leading to their current location of residence. Students could then create a plan for a program that animates the story of family locations. (HSS 2.1.1) (CA CCSS for ELA/Literacy W.K.3, W.1.3, W.2.3)

Standard Identifier: K-2.AP.15

Grade Range: K–2
Concept: Algorithms & Programming
Subconcept: Program Development
Practice(s): Communicating About Computing (7.3)

Standard:
Give attribution when using the ideas and creations of others while developing programs.

Descriptive Statement:
Computing makes it easy to reuse and remix others' creations, and this comes with a level of responsibility. Students credit artifacts that were created by others, such as pictures, music, and code. Credit could be given orally if presenting their work to the class, or in writing if sharing work on a class blog or website. Proper attribution at this stage does not require formal citation, such as in a bibliography or works cited document. For example, when creating an animation of the sun, moon, and stars using a blocks-based language, students could draw their own sun and use an image of the moon and stars from a website or a teammate. When students present the model to the class, they can orally give credit to the website or peer for the contributions. (CA CCSS for ELA/Literacy SL.K.5, SL.1.5, SL.2.5) (NGSS.1-ESS1-1) (CA Model School Library Standards 2.3.b, 2.4.2.a)

Standard Identifier: K-2.AP.17

Grade Range: K–2
Concept: Algorithms & Programming
Subconcept: Program Development
Practice(s): Communicating About Computing (7.2)

Standard:
Describe the steps taken and choices made during the iterative process of program development.

Descriptive Statement:
Program developers make choices and iterate to continually refine their product. At this stage, students explain or write about the goals and expected outcomes of the programs they create and the choices that they made when creating programs. Students could use coding journals, discussions with a teacher, class presentations, or blogs. For example, students could use a combination of images, verbal reflections, a physical model, and/or written text to show the step-by-step process taken to develop a program such as cutting and pasting coding commands into a journal, using manipulatives that represent different commands and control structures, and taking screenshots of code and adding to a digital journal. This iterative process could be documented via a speech, journal, one on one conference with teacher or peer, small group conference, or blog. (CA CCSS for ELA/Literacy SL.K.5, SL.1.5, SL.2.5) (CA NGSS: K-2-ETS1.2)

Standard Identifier: K-2.CS.2

Grade Range: K–2
Concept: Computing Systems
Subconcept: Hardware & Software
Practice(s): Communicating About Computing (7.2)

Standard:
Explain the functions of common hardware and software components of computing systems.

Descriptive Statement:
A computing system is composed of hardware and software. Hardware includes the physical components of a computer system. Software provides instructions for the system. These instructions are represented in a form that a computer can understand and are designed for specific purposes. Students identify and describe the function of hardware, such as desktop computers, laptop computers, tablet devices, monitors, keyboards, mice, trackpads, microphones, and printers. Students also identify and describe common software applications such as web browsers, games, and word processors. For example, students could create drawings of a computing system and label its major components with appropriate terminology. Students could then explain the function of each component. (VAPA Visual Arts 2 5.0) (CA CCSS for ELA/Literacy SL.K.5, SL.K.6, SL.1.5, SL.1.6, SL.2.5, SL.2.6) Alternatively, students could each be assigned a component of a computing system and arrange their bodies to represent the system. Students could then describe how their assigned component functions within the system. (P.E.K.1, 1.1)

Standard Identifier: K-2.DA.9

Grade Range: K–2
Concept: Data & Analysis
Subconcept: Inference & Models
Practice(s): Developing and Using Abstractions (4.1)

Standard:
Identify and describe patterns in data visualizations, such as charts or graphs, to make predictions.

Descriptive Statement:
Data can be used to make inferences or predictions about the world. For example, students could record the number of each color of candy in a small packet. Then, they compare their individual data with classmates. Students could use the collected data to predict how many of each colored candy will be in a full size bag of like candy. (CA CCSS for Mathematics K.MD.3, 1.MD.4, 2.MD.10) Alternatively, students could sort and classify objects according to their properties and note observations. Students could then create a graph or chart of their observations and look for connections/relationships (e.g., items that are hard are usually also smooth, or items that are fluffy are usually also light in weight.) Students then look at pictures of additional objects and make predictions regarding the properties of the objects pictured. (CA NGSS: 2-PS1-1, 2-PS1-2)

Standard Identifier: 3-5.AP.14

Grade Range: 3–5
Concept: Algorithms & Programming
Subconcept: Modularity
Practice(s): Developing and Using Abstractions, Creating Computational Artifacts (4.2, 5.3)

Standard:
Create programs by incorporating smaller portions of existing programs, to develop something new or add more advanced features.

Descriptive Statement:
Programs can be broken down into smaller parts, which can be incorporated into new or existing programs. Students incorporate predefined functions into their original designs. At this level, students do not need to understand all of the underlying implementation details of the abstractions that they use. For example, students could use code from a ping pong animation to make a ball bounce in a new basketball game. They could also incorporate code from a single-player basketball game to create a two-player game with slightly different rules. Alternatively, students could remix an animated story and add their own conclusion and/or additional dialogue. (CA CCSS for ELA/Literacy W.3.3.B, W.3.3.D, W.4.3.B, W.4.3.E, W.5.3.B, W.5.3.E) Additionally, when creating a game that occurs on the moon or planets, students could incorporate and modify code that simulates gravity on Earth. They could modify the strength of the gravitational force based on the mass of the planet or moon. (CA NGSS: 5-PS2-1)

Standard Identifier: 3-5.AP.15

Grade Range: 3–5
Concept: Algorithms & Programming
Subconcept: Program Development
Practice(s): Fostering an Inclusive Computing Culture, Creating Computational Artifacts (1.1, 5.1)

Standard:
Use an iterative process to plan and develop a program by considering the perspectives and preferences of others.

Descriptive Statement:
Planning is an important part of the iterative process of program development. Students gain a basic understanding of the importance and process of planning before beginning to write code for a program. They plan the development of a program by outlining key features, time and resource constraints, and user expectations. Students should document the plan as, for example, a storyboard, flowchart, pseudocode, or story map. For example, students could collaborate with a partner to plan and develop a program that graphs a function. They could iteratively modify the program based on feedback from diverse users, such as students who are color blind and may have trouble differentiating lines on a graph based on the color. (CA CCSS for Mathematics 5.G.1, 5.G.2) Alternatively, students could plan as a team to develop a program to display experimental data. They could implement the program in stages, generating basic displays first and then soliciting feedback from others on how easy it is to interpret (e.g., are labels clear and readable?, are lines thick enough?, are titles understandable?). Students could iteratively improve their display to make it more readable and to better support the communication of the finding of the experiment. (NGSS.3-5-ETS1-1, 3-5-ETS1-2, 3-5-ETS1-3)

Standard Identifier: 3-5.AP.16

Grade Range: 3–5
Concept: Algorithms & Programming
Subconcept: Program Development
Practice(s): Creating Computational Artifacts, Communicating About Computing (5.2, 7.3)

Standard:
Observe intellectual property rights and give appropriate attribution when creating, remixing, or combining programs.

Descriptive Statement:
Intellectual property rights can vary by country, but copyright laws give the creator of a work a set of rights and prevents others from copying the work and using it in ways that they may not like. Students consider common licenses that place limitations or restrictions on the use of others' work, such as images and music downloaded from the Internet. When incorporating the work of others, students attribute the work. At this level, students could give attribution by including credits or links directly in their programs, code comments, or separate project pages. For example, when making a program to model the life cycle of a butterfly, students could modify and reuse an existing program that describes the life cycle of a frog. Based on their research, students could identify and use Creative Commons-licensed or public domain images and sounds of caterpillars and butterflies. Students give attribution by properly citing the source of the original piece as necessary. (CA NGSS: 3-LS-1-1) (CA CCSS for ELA/Literacy W.3.8, W.4.8, W.5.8) Alternatively, when creating a program explaining the structure of the United States goverment, students find Creative Commons-licensed or public domain images to represent the three branches of government and attribute ownership of the images appropriately. If students find and incorporate an audio file of a group playing part of the national anthem, they appropriately give attribution on the project page. (HSS.3.4.4)

Standard Identifier: 3-5.AP.19

Grade Range: 3–5
Concept: Algorithms & Programming
Subconcept: Program Development
Practice(s): Communicating About Computing (7.2)

Standard:
Describe choices made during program development using code comments, presentations, and demonstrations.

Descriptive Statement:
People communicate about their code to help others understand and use their programs. Explaining one's design choices gives others a better understanding of one's work. Students may explain their step-by-step process of creating a program in a presentation or demonstration of their personal code journals. They describe how comments within code organize thought and process during the develpment of the program. For example, students could describe the decision to have the score in a game flash when it can be rounded to 100 by writing a comment in the code. (CA CCSS for Mathematics 3.NBT.1) Alternatively, students could present their overall program development experience and justify choices made by using storyboards, annotated images, videos, and/or journal entries. (CA CCSS for ELA/Literacy SL.3.4, SL.4.4, SL.5.4, SL.3.5, SL.4.5, SL.5.5) (CA NGSS: 3-5-ETS1-1, 3.5-ETS1-2, 3.5-ETS1-3)

Showing 1 - 10 of 39 Standards


Questions: Curriculum Frameworks and Instructional Resources Division | CFIRD@cde.ca.gov | 916-319-0881