Skip to main content
California Department of Education Logo

Computer Science Standards




Results


Showing 11 - 20 of 29 Standards

Standard Identifier: 3-5.DA.9

Grade Range: 3–5
Concept: Data & Analysis
Subconcept: Inference & Models
Practice(s): Communicating About Computing (7.1)

Standard:
Use data to highlight and/or propose relationships, predict outcomes, or communicate ideas.

Descriptive Statement:
The accuracy of data analysis is related to how the data is represented. Inferences or predictions based on data are less likely to be accurate if the data is insufficient, incomplete, or inaccurate or if the data is incorrect in some way. Additionally, people select aspects and subsets of data to be transformed, organized, and categorized. Students should be able to refer to data when communicating an idea, in order to highlight and/or propose relationships, predict outcomes, highlight different views and/or communicate insights and ideas. For example, students can be provided a scenario in which they are city managers who have a specific amount of funds to improve a city in California. Students can collect data of a city concerning land use, vegetation, wildlife, climate, population density, services and transportation (HSS.4.1.5) to determine and present what area needs to be focused on to improve a problem. Students can compare their data and planned use of funds with peers, clearly communicating or predict outcomes based on data collected. (CA CCCS for ELA/Literacy SL.3.1, SL.4.1, SL.5.1) Alternatively, students could record the temperature at noon each day to show that temperatures are higher in certain months of the year. If temperatures are not recorded on non-school days or are recorded incorrectly, the data would be incomplete and ideas being communicated could be inaccurate. Students may also record the day of the week on which the data was collected, but this would have no relevance to whether temperatures are higher or lower. In order to have sufficient and accurate data on which to communicate the idea, students might use data provided by a governmental weather agency. (CA NGSS: 3-ESS2-1)

Standard Identifier: 6-8.AP.14

Grade Range: 6–8
Concept: Algorithms & Programming
Subconcept: Modularity
Practice(s): Developing and Using Abstractions (4.1, 4.3)

Standard:
Create procedures with parameters to organize code and make it easier to reuse.

Descriptive Statement:
Procedures support modularity in developing programs. Parameters can provide greater flexibility, reusability, and efficient use of resources. Students create procedures and/or functions that are used multiple times within a program to repeat groups of instructions. They generalize the procedures and/or functions by defining parameters that generate different outputs for a wide range of inputs. For example, students could create a procedure to draw a circle which involves many instructions, but all of them can be invoked with one instruction, such as “drawCircle.” By adding a radius parameter, students can easily draw circles of different sizes. (CA CCSS for Mathematics 7.G.4) Alternatively, calculating the area of a regular polygon requires multiple steps. Students could write a function that accepts the number and length of the sides as parameters and then calculates the area of the polygon. This function can then be re-used inside any program to calculate the area of a regular polygon. (CA CCSS for Mathematics 6.G.1)

Standard Identifier: 6-8.AP.16

Grade Range: 6–8
Concept: Algorithms & Programming
Subconcept: Program Development
Practice(s): Developing and Using Abstractions, Creating Computational Artifacts, Communicating About Computing (4.2, 5.2, 7.3)

Standard:
Incorporate existing code, media, and libraries into original programs, and give attribution.

Descriptive Statement:
Building on the work of others enables students to produce more interesting and powerful creations. Students use portions of code, algorithms, digital media, and/or data created by others in their own programs and websites. They give attribution to the original creators to acknowledge their contributions. For example, when creating a side-scrolling game, students may incorporate portions of code that create a realistic jump movement from another person's game, and they may also import Creative Commons-licensed images to use in the background. Alternatively, when creating a website to demonstrate their knowledge of historical figures from the Civil War, students may use a professionally-designed template and public domain images of historical figures. (HSS.8.10.5) Additionally, students could import libraries and connect to web application program interfaces (APIs) to make their own programming processes more efficient and reduce the number of bugs (e.g., to check whether the user input is a valid date, to input the current temperature from another city).

Standard Identifier: 6-8.AP.19

Grade Range: 6–8
Concept: Algorithms & Programming
Subconcept: Program Development
Practice(s): Communicating About Computing (7.2)

Standard:
Document programs in order to make them easier to use, read, test, and debug.

Descriptive Statement:
Documentation allows creators, end users, and other developers to more easily use and understand a program. Students provide documentation for end users that explains their artifacts and how they function (e.g., project overview, user instructions). They also include comments within code to describe portions of their programs and make it easier for themselves and other developers to use, read, test, and debug. For example, students could add comments to describe functionality of different segments of code (e.g., input scores between 0 and 100, check for invalid input, calculate and display the average of the scores). They could also communicate the process used by writing design documents, creating flowcharts, or making presentations. (CA CCSS for ELA/Literacy SL.6.5, SL.7.5, SL.8.5)

Standard Identifier: 6-8.DA.9

Grade Range: 6–8
Concept: Data & Analysis
Subconcept: Inference & Models
Practice(s): Developing and Using Abstractions, Testing and Refining Computational Artifacts (4.4, 6.1)

Standard:
Test and analyze the effects of changing variables while using computational models.

Descriptive Statement:
Variables within a computational model may be changed, in order to alter a computer simulation or to more accurately represent how various data is related. Students interact with a given model, make changes to identified model variables, and observe and reflect upon the results. For example, students could test a program that makes a robot move on a track by making changes to variables (e.g., height and angle of track, size and mass of the robot) and discussing how these changes affect how far the robot travels. (CA NGSS: MS-PS2-2) Alternatively, students could test a game simulation and change variables (e.g., skill of simulated players, nature of opening moves) and analyze how these changes affect who wins the game. (CA NGSS: MS-ETS1-3) Additionally, students could modify a model for predicting the likely color of the next pick from a bag of colored candy and analyze the effects of changing variables representing the common color ratios in a typical bag of candy. (CA CCSS for Mathematics 7.SP.7, 8.SP.4)

Standard Identifier: 9-12.AP.17

Grade Range: 9–12
Concept: Algorithms & Programming
Subconcept: Modularity
Practice(s): Developing and Using Abstractions, Creating Computational Artifacts (4.3, 5.2)

Standard:
Create computational artifacts using modular design.

Descriptive Statement:
Computational artifacts are created by combining and modifying existing computational artifacts and/or by developing new artifacts. To reduce complexity, large programs can be designed as systems of interacting modules, each with a specific role, coordinating for a common overall purpose. Students should create computational artifacts with interacting procedures, modules, and/or libraries. For example, students could incorporate a physics library into an animation of bouncing balls. Alternatively, students could integrate open-source JavaScript libraries to expand the functionality of a web application. Additionally, students could create their own game to teach Spanish vocabulary words using their own modular design (e.g., including methods to: control scoring, manage wordlists, manage access to different game levels, take input from the user, etc.).

Standard Identifier: 9-12.AP.19

Grade Range: 9–12
Concept: Algorithms & Programming
Subconcept: Program Development
Practice(s): Communicating About Computing (7.3)

Standard:
Explain the limitations of licenses that restrict use of computational artifacts when using resources such as libraries.

Descriptive Statement:
Software licenses include copyright, freeware, and open-source licensing schemes. Licenses are used to protect the intellectual property of the author while also defining accessibility of the code. Students consider licensing implications for their own work, especially when incorporating libraries and other resources. For example, students might consider two software libraries that address a similar need, justifying their choice of one over the other. The choice could be based upon least restrictive licensing or further protections for their own intellectual property.

Standard Identifier: 9-12.AP.22

Grade Range: 9–12
Concept: Algorithms & Programming
Subconcept: Program Development
Practice(s): Communicating About Computing (7.2)

Standard:
Document decisions made during the design process using text, graphics, presentations, and/or demonstrations in the development of complex programs.

Descriptive Statement:
Complex programs are often iteratively designed as systems of interacting modules, each with a specific role, coordinating for a common overall purpose. Comments are included in code both to document the purpose of modules as well as the implementation details within a module. Together these support documentation of the design process. Students use resources such as libraries and tools to edit and manage parts of the program and corresponding documentation. For example, during development of a computational artifact students could comment their code (with date, modification, and rationale), sketch a flowchart to summarize control flow in a code journal, and share ideas and updates on a white board. Students may document their logic by explaining the development process and presenting to the class. The presentation could include photos of their white board, a video or screencast explaining the development process, or recorded audio description.

Standard Identifier: 9-12.CS.1

Grade Range: 9–12
Concept: Computing Systems
Subconcept: Devices
Practice(s): Developing and Using Abstractions (4.1)

Standard:
Describe ways in which abstractions hide the underlying implementation details of computing systems to simplify user experiences.

Descriptive Statement:
An abstraction is a representation of an idea or phenomenon that hides details irrelevant to the question at hand. Computing systems, both stand alone and embedded in products, are often integrated with other systems to simplify user experiences. For example, students could identify geolocation hardware embedded in a smartphone and describe how this simplifies the users experience since the user does not have to enter her own location on the phone. Alternatively, students might select an embedded device such as a car stereo, identify the types of data (e.g., radio station presets, volume level) and procedures (e.g., increase volume, store/recall saved station, mute) it includes, and explain how the implementation details are hidden from the user.

Standard Identifier: 9-12.CS.2

Grade Range: 9–12
Concept: Computing Systems
Subconcept: Hardware & Software
Practice(s): Developing and Using Abstractions (4.1)

Standard:
Compare levels of abstraction and interactions between application software, system software, and hardware.

Descriptive Statement:
At its most basic level, a computer is composed of physical hardware on which software runs. Multiple layers of software are built upon various layers of hardware. Layers manage interactions and complexity in the computing system. System software manages a computing device's resources so that software can interact with hardware. Application software communicates with the user and the system software to accomplish its purpose. Students compare and describe how application software, system software, and hardware interact. For example, students could compare how various levels of hardware and software interact when a picture is to be taken on a smartphone. Systems software provides low-level commands to operate the camera hardware, but the application software interacts with system software at a higher level by requesting a common image file format (e.g., .png) that the system software provides.

Showing 11 - 20 of 29 Standards


Questions: Curriculum Frameworks and Instructional Resources Division | CFIRD@cde.ca.gov | 916-319-0881