Skip to main content
California Department of Education Logo

Computer Science Standards




Results


Showing 31 - 35 of 35 Standards

Standard Identifier: 9-12S.AP.22

Grade Range: 9–12 Specialty
Concept: Algorithms & Programming
Subconcept: Program Development
Practice(s): Testing and Refining Computational Artifacts (6.1)

Standard:
Develop and use a series of test cases to verify that a program performs according to its design specifications.

Descriptive Statement:
Testing software is a critically important process. The ability of students to identify a set of important test cases communicates their understanding of the design specifications and potential issues due to implementation choices. Students select and apply their own test cases to cover both general behavior and the edge cases which show behavior at boundary conditions. For example, for a program that is supposed to accept test scores in the range of [0,100], students could develop appropriate tests (e.g, a negative value, 0, 100, and a value above 100). Alternatively, students developing an app to allow users to create and store calendar appointments could develop and use a series of test cases for various scenarios including checking for correct dates, flagging for user confirmation when a calendar event is very long, checking for correct email address format for invitees, and checking for appropriate screen display as users go through the process of adding, editing, and deleting events.

Standard Identifier: 9-12S.AP.24

Grade Range: 9–12 Specialty
Concept: Algorithms & Programming
Subconcept: Program Development
Practice(s): Testing and Refining Computational Artifacts (6.3)

Standard:
Evaluate key qualities of a program through a process such as a code review.

Descriptive Statement:
Code reviews are a common software industry practice and valuable for developing technical communication skills. Key qualities of code include correctness, usability, readability, efficiency, and scalability. Students walk through code they created and explain how it works. Additionally, they follow along when someone else is explaining their code and ask appropriate questions. For example, students could present their code to a group or visually inspect code in pairs. Alternatively, in response to another student's presentation, students could provide feedback including comments on correctness of the code, comments on how code interacts with code that calls it, and design and documentation features.

Standard Identifier: 9-12S.AP.25

Grade Range: 9–12 Specialty
Concept: Algorithms & Programming
Subconcept: Program Development
Practice(s): Collaborating Around Computing, Creating Computational Artifacts (2.4, 5.2)

Standard:
Use version control systems, integrated development environments (IDEs), and collaborative tools and practices (e.g., code documentation) while developing software within a group.

Descriptive Statement:
Software development is a process that benefits from the use of tools that manage complexity, iterative development, and collaboration. Large or complex software projects often require contributions from multiple developers. Version control systems and other collaborative tools and practices help coordinate the process and products contributed by individuals on a development team. An integrated development environment (IDE) is a program within which a developer implements, compiles or interprets, tests, debugs, and deploys a software project. Students use common software development and documentation support tools in the context of a group software development project. At this level, facility with the full functionality available in the collaborative tools is not expected. For example, students could use common version control systems to modify and improve code or revert to a previous code version. Alternatively, students could use appropriate IDEs to support more efficient code design and development. Additionally, students could use various collaboration, communication, and code documentation tools designed to support groups engaging in complex and interrelated work.

Standard Identifier: 9-12S.IC.27

Grade Range: 9–12 Specialty
Concept: Impacts of Computing
Subconcept: Culture
Practice(s): Fostering an Inclusive Computing Culture, Testing and Refining Computational Artifacts (1.2, 6.1)

Standard:
Evaluate computational artifacts with regard to improving their beneficial effects and reducing harmful effects on society.

Descriptive Statement:
People design computational artifacts to help make the lives of humans better. Students evaluate an artifact and comment on aspects of it which positively or negatively impact users and give ideas for reducing the possible negative impacts. For example, students could discuss how algorithms that screen job candidates' resumes can cut costs for companies (a beneficial effect) but introduce or amplify bias in the hiring process (a harmful effect). Alternatively, students could discuss how turn-by-turn navigation tools can help drivers avoid traffic and find alternate routes (a beneficial effect), but sometimes channel large amounts of traffic down small neighborhood streets (a harmful effect). Additionally, students could discuss how social media algorithms can help direct users' attention to interesting content (a beneficial effect), while simultaneously limiting users' exposure to information that contradicts pre-existing beliefs (a harmful effect).

Standard Identifier: 9-12S.IC.29

Grade Range: 9–12 Specialty
Concept: Impacts of Computing
Subconcept: Culture
Practice(s): Fostering an Inclusive Computing Culture (1.2)

Standard:
Evaluate the impact of equity, access, and influence on the distribution of computing resources in a global society.

Descriptive Statement:
Computers, computation, and technology can help improve the lives of humans and support positive developments in society, economy, and/or culture. However, access to such resources is not the same for everyone in the world. Students define and evaluate ways in which different technologies, applications, or computational tools might benefit all people in society or might only benefit those with the greatest access or resources. For example, students could describe ways in which groups of people benefit, do not benefit, or could benefit better by access to high-speed Internet connectivity. Alternatively, students could describe educational impacts of children not having access to a computer in their home.

Showing 31 - 35 of 35 Standards


Questions: Curriculum Frameworks and Instructional Resources Division | CFIRD@cde.ca.gov | 916-319-0881