Computer Science Standards
Remove this criterion from the search
Recognizing and Defining Computational Problems
Remove this criterion from the search
Developing and Using Abstractions
Remove this criterion from the search
Creating Computational Artifacts
Remove this criterion from the search
Testing and Refining Computational Artifacts
Results
Showing 31 - 40 of 88 Standards
Standard Identifier: 6-8.AP.11
Grade Range:
6–8
Concept:
Algorithms & Programming
Subconcept:
Variables
Practice(s):
Creating Computational Artifacts (5.1, 5.2)
Standard:
Create clearly named variables that store data, and perform operations on their contents.
Descriptive Statement:
A variable is a container for data, and the name used for accessing the variable is called the identifier. Students declare, initialize, and update variables for storing different types of program data (e.g., text, integers) using names and naming conventions (e.g. camel case) that clearly convey the purpose of the variable, facilitate debugging, and improve readability. For example, students could program a quiz game with a score variable (e.g. quizScore) that is initially set to zero and increases by increments of one each time the user answers a quiz question correctly and decreases by increments of one each time a user answers a quiz question incorrectly, resulting in a score that is either a positive or negative integer. (CA CCSS for Mathematics 6.NS.5) Alternatively, students could write a program that prompts the user for their name, stores the user's response in a variable (e.g. userName), and uses this variable to greet the user by name.
Create clearly named variables that store data, and perform operations on their contents.
Descriptive Statement:
A variable is a container for data, and the name used for accessing the variable is called the identifier. Students declare, initialize, and update variables for storing different types of program data (e.g., text, integers) using names and naming conventions (e.g. camel case) that clearly convey the purpose of the variable, facilitate debugging, and improve readability. For example, students could program a quiz game with a score variable (e.g. quizScore) that is initially set to zero and increases by increments of one each time the user answers a quiz question correctly and decreases by increments of one each time a user answers a quiz question incorrectly, resulting in a score that is either a positive or negative integer. (CA CCSS for Mathematics 6.NS.5) Alternatively, students could write a program that prompts the user for their name, stores the user's response in a variable (e.g. userName), and uses this variable to greet the user by name.
Standard Identifier: 6-8.AP.12
Grade Range:
6–8
Concept:
Algorithms & Programming
Subconcept:
Control
Practice(s):
Creating Computational Artifacts (5.1, 5.2)
Standard:
Design and iteratively develop programs that combine control structures and use compound conditions.
Descriptive Statement:
Control structures can be combined in many ways. Nested loops are loops placed within loops, and nested conditionals allow the result of one conditional to lead to another. Compound conditions combine two or more conditions in a logical relationship (e.g., using AND, OR, and NOT). Students appropriately use control structures to perform repetitive and selection tasks. For example, when programming an interactive story, students could use a compound conditional within a loop to unlock a door only if a character has a key AND is touching the door. (CA CCSS for ELA/Literacy W.6.3, W.7.3, W.8.3) Alternatively, students could use compound conditionals when writing a program to test whether two points lie along the line defined by a particular linear function. (CA CCSS for Mathematics 8.EE.7) Additionally, students could use nested loops to program a character to do the "chicken dance" by opening and closing the beak, flapping the wings, shaking the hips, and clapping four times each; this dance "chorus" is then repeated several times in its entirety.
Design and iteratively develop programs that combine control structures and use compound conditions.
Descriptive Statement:
Control structures can be combined in many ways. Nested loops are loops placed within loops, and nested conditionals allow the result of one conditional to lead to another. Compound conditions combine two or more conditions in a logical relationship (e.g., using AND, OR, and NOT). Students appropriately use control structures to perform repetitive and selection tasks. For example, when programming an interactive story, students could use a compound conditional within a loop to unlock a door only if a character has a key AND is touching the door. (CA CCSS for ELA/Literacy W.6.3, W.7.3, W.8.3) Alternatively, students could use compound conditionals when writing a program to test whether two points lie along the line defined by a particular linear function. (CA CCSS for Mathematics 8.EE.7) Additionally, students could use nested loops to program a character to do the "chicken dance" by opening and closing the beak, flapping the wings, shaking the hips, and clapping four times each; this dance "chorus" is then repeated several times in its entirety.
Standard Identifier: 6-8.AP.13
Grade Range:
6–8
Concept:
Algorithms & Programming
Subconcept:
Modularity
Practice(s):
Recognizing and Defining Computational Problems (3.2)
Standard:
Decompose problems and subproblems into parts to facilitate the design, implementation, and review of programs.
Descriptive Statement:
Decomposition facilitates program development by allowing students to focus on one piece at a time (e.g., getting input from the user, processing the data, and displaying the result to the user). Decomposition also enables different students to work on different parts at the same time. Students break down (decompose) problems into subproblems, which can be further broken down to smaller parts. Students could create an arcade game, with a title screen, a game screen, and a win/lose screen with an option to play the game again. To do this, students need to identify subproblems that accompany each screen (e.g., selecting an avatar goes in the title screen, events for controlling character action and scoring goes in the game screen, and displaying final and high score and asking whether to play again goes in the win/lose screen). Alternatively, students could decompose the problem of calculating and displaying class grades. Subproblems might include: accept input for students grades on various assignments, check for invalid grade entries, calculate per assignment averages, calculate per student averages, and display histograms of student scores for each assignment. (CA CCSS for Mathematics 6.RP.3c, 6.SP.4, 6.SP.5)
Decompose problems and subproblems into parts to facilitate the design, implementation, and review of programs.
Descriptive Statement:
Decomposition facilitates program development by allowing students to focus on one piece at a time (e.g., getting input from the user, processing the data, and displaying the result to the user). Decomposition also enables different students to work on different parts at the same time. Students break down (decompose) problems into subproblems, which can be further broken down to smaller parts. Students could create an arcade game, with a title screen, a game screen, and a win/lose screen with an option to play the game again. To do this, students need to identify subproblems that accompany each screen (e.g., selecting an avatar goes in the title screen, events for controlling character action and scoring goes in the game screen, and displaying final and high score and asking whether to play again goes in the win/lose screen). Alternatively, students could decompose the problem of calculating and displaying class grades. Subproblems might include: accept input for students grades on various assignments, check for invalid grade entries, calculate per assignment averages, calculate per student averages, and display histograms of student scores for each assignment. (CA CCSS for Mathematics 6.RP.3c, 6.SP.4, 6.SP.5)
Standard Identifier: 6-8.AP.14
Grade Range:
6–8
Concept:
Algorithms & Programming
Subconcept:
Modularity
Practice(s):
Developing and Using Abstractions (4.1, 4.3)
Standard:
Create procedures with parameters to organize code and make it easier to reuse.
Descriptive Statement:
Procedures support modularity in developing programs. Parameters can provide greater flexibility, reusability, and efficient use of resources. Students create procedures and/or functions that are used multiple times within a program to repeat groups of instructions. They generalize the procedures and/or functions by defining parameters that generate different outputs for a wide range of inputs. For example, students could create a procedure to draw a circle which involves many instructions, but all of them can be invoked with one instruction, such as “drawCircle.” By adding a radius parameter, students can easily draw circles of different sizes. (CA CCSS for Mathematics 7.G.4) Alternatively, calculating the area of a regular polygon requires multiple steps. Students could write a function that accepts the number and length of the sides as parameters and then calculates the area of the polygon. This function can then be re-used inside any program to calculate the area of a regular polygon. (CA CCSS for Mathematics 6.G.1)
Create procedures with parameters to organize code and make it easier to reuse.
Descriptive Statement:
Procedures support modularity in developing programs. Parameters can provide greater flexibility, reusability, and efficient use of resources. Students create procedures and/or functions that are used multiple times within a program to repeat groups of instructions. They generalize the procedures and/or functions by defining parameters that generate different outputs for a wide range of inputs. For example, students could create a procedure to draw a circle which involves many instructions, but all of them can be invoked with one instruction, such as “drawCircle.” By adding a radius parameter, students can easily draw circles of different sizes. (CA CCSS for Mathematics 7.G.4) Alternatively, calculating the area of a regular polygon requires multiple steps. Students could write a function that accepts the number and length of the sides as parameters and then calculates the area of the polygon. This function can then be re-used inside any program to calculate the area of a regular polygon. (CA CCSS for Mathematics 6.G.1)
Standard Identifier: 6-8.AP.16
Grade Range:
6–8
Concept:
Algorithms & Programming
Subconcept:
Program Development
Practice(s):
Developing and Using Abstractions, Creating Computational Artifacts, Communicating About Computing (4.2, 5.2, 7.3)
Standard:
Incorporate existing code, media, and libraries into original programs, and give attribution.
Descriptive Statement:
Building on the work of others enables students to produce more interesting and powerful creations. Students use portions of code, algorithms, digital media, and/or data created by others in their own programs and websites. They give attribution to the original creators to acknowledge their contributions. For example, when creating a side-scrolling game, students may incorporate portions of code that create a realistic jump movement from another person's game, and they may also import Creative Commons-licensed images to use in the background. Alternatively, when creating a website to demonstrate their knowledge of historical figures from the Civil War, students may use a professionally-designed template and public domain images of historical figures. (HSS.8.10.5) Additionally, students could import libraries and connect to web application program interfaces (APIs) to make their own programming processes more efficient and reduce the number of bugs (e.g., to check whether the user input is a valid date, to input the current temperature from another city).
Incorporate existing code, media, and libraries into original programs, and give attribution.
Descriptive Statement:
Building on the work of others enables students to produce more interesting and powerful creations. Students use portions of code, algorithms, digital media, and/or data created by others in their own programs and websites. They give attribution to the original creators to acknowledge their contributions. For example, when creating a side-scrolling game, students may incorporate portions of code that create a realistic jump movement from another person's game, and they may also import Creative Commons-licensed images to use in the background. Alternatively, when creating a website to demonstrate their knowledge of historical figures from the Civil War, students may use a professionally-designed template and public domain images of historical figures. (HSS.8.10.5) Additionally, students could import libraries and connect to web application program interfaces (APIs) to make their own programming processes more efficient and reduce the number of bugs (e.g., to check whether the user input is a valid date, to input the current temperature from another city).
Standard Identifier: 6-8.AP.17
Grade Range:
6–8
Concept:
Algorithms & Programming
Subconcept:
Program Development
Practice(s):
Testing and Refining Computational Artifacts (6.1)
Standard:
Systematically test and refine programs using a range of test cases.
Descriptive Statement:
Use cases and test cases are created to evaluate whether programs function as intended. At this level, students develop use cases and test cases with teacher guidance. Testing should become a deliberate process that is more iterative, systematic, and proactive than at lower levels. For example, students test programs by considering potential errors, such as what will happen if a user enters invalid input (e.g., negative numbers and 0 instead of positive numbers). Alternatively, in an interactive program, students could test that the character cannot move off of the screen in any direction, cannot move through walls, and can interact with other characters. They then adjust character behavior as needed.
Systematically test and refine programs using a range of test cases.
Descriptive Statement:
Use cases and test cases are created to evaluate whether programs function as intended. At this level, students develop use cases and test cases with teacher guidance. Testing should become a deliberate process that is more iterative, systematic, and proactive than at lower levels. For example, students test programs by considering potential errors, such as what will happen if a user enters invalid input (e.g., negative numbers and 0 instead of positive numbers). Alternatively, in an interactive program, students could test that the character cannot move off of the screen in any direction, cannot move through walls, and can interact with other characters. They then adjust character behavior as needed.
Standard Identifier: 6-8.AP.18
Grade Range:
6–8
Concept:
Algorithms & Programming
Subconcept:
Program Development
Practice(s):
Collaborating Around Computing, Creating Computational Artifacts (2.2, 5.1)
Standard:
Distribute tasks and maintain a project timeline when collaboratively developing computational artifacts.
Descriptive Statement:
Collaboration is a common and crucial practice in programming development. Often, many individuals and groups work on the interdependent parts of a project together. Students assume pre-defined roles within their teams and manage the project workflow using structured timelines. With teacher guidance, they begin to create collective goals, expectations, and equitable workloads. For example, students could decompose the design stage of a game into planning the storyboard, flowchart, and different parts of the game mechanics. They can then distribute tasks and roles among members of the team and assign deadlines. Alternatively, students could work as a team to develop a storyboard for an animation representing a written narrative, and then program the scenes individually. (CA CCSS for ELA/Literacy W.6.3, W.7.3, W.8.3)
Distribute tasks and maintain a project timeline when collaboratively developing computational artifacts.
Descriptive Statement:
Collaboration is a common and crucial practice in programming development. Often, many individuals and groups work on the interdependent parts of a project together. Students assume pre-defined roles within their teams and manage the project workflow using structured timelines. With teacher guidance, they begin to create collective goals, expectations, and equitable workloads. For example, students could decompose the design stage of a game into planning the storyboard, flowchart, and different parts of the game mechanics. They can then distribute tasks and roles among members of the team and assign deadlines. Alternatively, students could work as a team to develop a storyboard for an animation representing a written narrative, and then program the scenes individually. (CA CCSS for ELA/Literacy W.6.3, W.7.3, W.8.3)
Standard Identifier: 6-8.CS.1
Grade Range:
6–8
Concept:
Computing Systems
Subconcept:
Devices
Practice(s):
Fostering an Inclusive Computing Culture, Recognizing and Defining Computational Problems (1.2, 3.3)
Standard:
Design modifications to computing devices in order to improve the ways users interact with the devices.
Descriptive Statement:
Computing devices can extend the abilities of humans, but design considerations are critical to make these devices useful. Students suggest modifications to the design of computing devices and describe how these modifications would improve usabilty. For example, students could create a design for the screen layout of a smartphone that is more usable by people with vision impairments or hand tremors. They might also design how to use the device as a scanner to convert text to speech. Alternatively, students could design modifications for a student ID card reader to increase usability by planning for scanner height, need of scanner device to be connected physically to the computer, robustness of scanner housing, and choice of use of RFID or line of sight scanners. (CA NGSS: MS-ETS1-1)
Design modifications to computing devices in order to improve the ways users interact with the devices.
Descriptive Statement:
Computing devices can extend the abilities of humans, but design considerations are critical to make these devices useful. Students suggest modifications to the design of computing devices and describe how these modifications would improve usabilty. For example, students could create a design for the screen layout of a smartphone that is more usable by people with vision impairments or hand tremors. They might also design how to use the device as a scanner to convert text to speech. Alternatively, students could design modifications for a student ID card reader to increase usability by planning for scanner height, need of scanner device to be connected physically to the computer, robustness of scanner housing, and choice of use of RFID or line of sight scanners. (CA NGSS: MS-ETS1-1)
Standard Identifier: 6-8.CS.2
Grade Range:
6–8
Concept:
Computing Systems
Subconcept:
Hardware & Software
Practice(s):
Creating Computational Artifacts (5.1)
Standard:
Design a project that combines hardware and software components to collect and exchange data.
Descriptive Statement:
Collecting and exchanging data involves input, output, storage, and processing. When possible, students select the components for their project designs by considering tradeoffs between factors such as functionality, cost, size, speed, accessibility, and aesthetics. Students do not need to implement their project design in order to meet this standard. For example, students could design a mobile tour app that displays information relevant to specific locations when the device is nearby or when the user selects a virtual stop on the tour. They select appropriate components, such as GPS or cellular-based geolocation tools, textual input, and speech recognition, to use in their project design. Alternatively, students could design a project that uses a sensor to collect the salinity, moisture, and temperature of soil. They may select a sensor that connects wirelessly through a Bluetooth connection because it supports greater mobility, or they could instead select a physical USB connection that does not require a separate power source. (CA NGSS: MS-ETS1-1, MS-ETS1-2)
Design a project that combines hardware and software components to collect and exchange data.
Descriptive Statement:
Collecting and exchanging data involves input, output, storage, and processing. When possible, students select the components for their project designs by considering tradeoffs between factors such as functionality, cost, size, speed, accessibility, and aesthetics. Students do not need to implement their project design in order to meet this standard. For example, students could design a mobile tour app that displays information relevant to specific locations when the device is nearby or when the user selects a virtual stop on the tour. They select appropriate components, such as GPS or cellular-based geolocation tools, textual input, and speech recognition, to use in their project design. Alternatively, students could design a project that uses a sensor to collect the salinity, moisture, and temperature of soil. They may select a sensor that connects wirelessly through a Bluetooth connection because it supports greater mobility, or they could instead select a physical USB connection that does not require a separate power source. (CA NGSS: MS-ETS1-1, MS-ETS1-2)
Standard Identifier: 6-8.CS.3
Grade Range:
6–8
Concept:
Computing Systems
Subconcept:
Troubleshooting
Practice(s):
Testing and Refining Computational Artifacts (6.2)
Standard:
Systematically apply troubleshooting strategies to identify and resolve hardware and software problems in computing systems.
Descriptive Statement:
When problems occur within computing systems, it is important to take a structured, step-by-step approach to effectively solve the problem and ensure that potential solutions are not overlooked. Examples of troubleshooting strategies include following a troubleshooting flow diagram, making changes to software to see if hardware will work, checking connections and settings, and swapping in working components. Since a computing device may interact with interconnected devices within a system, problems may not be due to the specific computing device itself but to devices connected to it. For example, students could work through a checklist of solutions for connectivity problems in a lab of computers connected wirelessly or through physical cables. They could also search for technical information online and engage in technical reading to create troubleshooting documents that they then apply. (CA CCSS for ELA/Literacy RST.6-8.10) Alternatively, students could explore and utilize operating system tools to reset a computer's default language to English. Additionally, students could swap out an externally-controlled sensor giving fluctuating readings with a new sensor to check whether there is a hardware problem.
Systematically apply troubleshooting strategies to identify and resolve hardware and software problems in computing systems.
Descriptive Statement:
When problems occur within computing systems, it is important to take a structured, step-by-step approach to effectively solve the problem and ensure that potential solutions are not overlooked. Examples of troubleshooting strategies include following a troubleshooting flow diagram, making changes to software to see if hardware will work, checking connections and settings, and swapping in working components. Since a computing device may interact with interconnected devices within a system, problems may not be due to the specific computing device itself but to devices connected to it. For example, students could work through a checklist of solutions for connectivity problems in a lab of computers connected wirelessly or through physical cables. They could also search for technical information online and engage in technical reading to create troubleshooting documents that they then apply. (CA CCSS for ELA/Literacy RST.6-8.10) Alternatively, students could explore and utilize operating system tools to reset a computer's default language to English. Additionally, students could swap out an externally-controlled sensor giving fluctuating readings with a new sensor to check whether there is a hardware problem.
Showing 31 - 40 of 88 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881