Computer Science Standards
Remove this criterion from the search
Collaborating Around Computing
Remove this criterion from the search
Recognizing and Defining Computational Problems
Remove this criterion from the search
Testing and Refining Computational Artifacts
Remove this criterion from the search
Communicating About Computing
Results
Showing 21 - 30 of 80 Standards
Standard Identifier: 3-5.CS.3
Grade Range:
3–5
Concept:
Computing Systems
Subconcept:
Troubleshooting
Practice(s):
Testing and Refining Computational Artifacts (6.2)
Standard:
Determine potential solutions to solve simple hardware and software problems using common troubleshooting strategies.
Descriptive Statement:
Although computing systems vary, common troubleshooting strategies can be used across many different systems. Students use troubleshooting strategies to identify problems that could include a device not responding, lacking power, lacking a network connection, an app crashing, not playing sounds, or password entry not working. Students use and develop various solutions to address these problems. Solutions may include rebooting the device, checking for power, checking network availability, opening and closing an app, making sure speakers are turned on or headphones are plugged in, and making sure that the caps lock key is not on. For example, students could prepare for and participate in a collaborative discussion in which they identify and list computing system problems and then describe common successful fixes. (CA CCSS for ELA/Literacy SL.3.1, SL.4.1, SL.5.1) Alternatively, students could write informative/explanatory texts, create a poster, or use another medium of communication to examine common troubleshooting strategies and convey these ideas and information clearly. (CA CCSS for ELA/Literacy W.3.2, W.4.2, W.5.2)
Determine potential solutions to solve simple hardware and software problems using common troubleshooting strategies.
Descriptive Statement:
Although computing systems vary, common troubleshooting strategies can be used across many different systems. Students use troubleshooting strategies to identify problems that could include a device not responding, lacking power, lacking a network connection, an app crashing, not playing sounds, or password entry not working. Students use and develop various solutions to address these problems. Solutions may include rebooting the device, checking for power, checking network availability, opening and closing an app, making sure speakers are turned on or headphones are plugged in, and making sure that the caps lock key is not on. For example, students could prepare for and participate in a collaborative discussion in which they identify and list computing system problems and then describe common successful fixes. (CA CCSS for ELA/Literacy SL.3.1, SL.4.1, SL.5.1) Alternatively, students could write informative/explanatory texts, create a poster, or use another medium of communication to examine common troubleshooting strategies and convey these ideas and information clearly. (CA CCSS for ELA/Literacy W.3.2, W.4.2, W.5.2)
Standard Identifier: 3-5.DA.8
Grade Range:
3–5
Concept:
Data & Analysis
Subconcept:
Collection, Visualization, & Transformation
Practice(s):
Communicating About Computing (7.1)
Standard:
Organize and present collected data visually to highlight relationships and support a claim.
Descriptive Statement:
Raw data has little meaning on its own. Data is often sorted or grouped to provide additional clarity. Organizing data can make interpreting and communicating it to others easier. Data points can be clustered by a number of commonalities. The same data could be manipulated in different ways to emphasize particular aspects or parts of the data set. For example, students could create and administer electronic surveys to their classmates. Possible topics could include favorite books, family heritage, and after school activities. Students could then create digital displays of the data they have collected such as column histogram charts showing the percent of respondents in each grade who selected a particular favorite book. Finally, students could make quantitative statements supported by the data such as which books are more appealing to specific ages of students. As an extension, students could write an opinion piece stating a claim and supporting it with evidence from the data they collected. (CA CCSS for Mathematics 3.MD.3, 4.MD.4, 5.MD.2) (CA CCSS for ELA/Literacy W.3.1, W.4.1, W.5.1) Alternatively, students could represent data in tables and graphical displays to describe weather experienced in the last several years. They could select the type of graphical display based on the specific data represented (e.g., daily high/low temperatures on a scatter plot, average temperatures for a month across years in a column chart). Students could then make a claim about expected weather in future months based on the data. (CA NGSS: 3-ESS2-1)
Organize and present collected data visually to highlight relationships and support a claim.
Descriptive Statement:
Raw data has little meaning on its own. Data is often sorted or grouped to provide additional clarity. Organizing data can make interpreting and communicating it to others easier. Data points can be clustered by a number of commonalities. The same data could be manipulated in different ways to emphasize particular aspects or parts of the data set. For example, students could create and administer electronic surveys to their classmates. Possible topics could include favorite books, family heritage, and after school activities. Students could then create digital displays of the data they have collected such as column histogram charts showing the percent of respondents in each grade who selected a particular favorite book. Finally, students could make quantitative statements supported by the data such as which books are more appealing to specific ages of students. As an extension, students could write an opinion piece stating a claim and supporting it with evidence from the data they collected. (CA CCSS for Mathematics 3.MD.3, 4.MD.4, 5.MD.2) (CA CCSS for ELA/Literacy W.3.1, W.4.1, W.5.1) Alternatively, students could represent data in tables and graphical displays to describe weather experienced in the last several years. They could select the type of graphical display based on the specific data represented (e.g., daily high/low temperatures on a scatter plot, average temperatures for a month across years in a column chart). Students could then make a claim about expected weather in future months based on the data. (CA NGSS: 3-ESS2-1)
Standard Identifier: 3-5.DA.9
Grade Range:
3–5
Concept:
Data & Analysis
Subconcept:
Inference & Models
Practice(s):
Communicating About Computing (7.1)
Standard:
Use data to highlight and/or propose relationships, predict outcomes, or communicate ideas.
Descriptive Statement:
The accuracy of data analysis is related to how the data is represented. Inferences or predictions based on data are less likely to be accurate if the data is insufficient, incomplete, or inaccurate or if the data is incorrect in some way. Additionally, people select aspects and subsets of data to be transformed, organized, and categorized. Students should be able to refer to data when communicating an idea, in order to highlight and/or propose relationships, predict outcomes, highlight different views and/or communicate insights and ideas. For example, students can be provided a scenario in which they are city managers who have a specific amount of funds to improve a city in California. Students can collect data of a city concerning land use, vegetation, wildlife, climate, population density, services and transportation (HSS.4.1.5) to determine and present what area needs to be focused on to improve a problem. Students can compare their data and planned use of funds with peers, clearly communicating or predict outcomes based on data collected. (CA CCCS for ELA/Literacy SL.3.1, SL.4.1, SL.5.1) Alternatively, students could record the temperature at noon each day to show that temperatures are higher in certain months of the year. If temperatures are not recorded on non-school days or are recorded incorrectly, the data would be incomplete and ideas being communicated could be inaccurate. Students may also record the day of the week on which the data was collected, but this would have no relevance to whether temperatures are higher or lower. In order to have sufficient and accurate data on which to communicate the idea, students might use data provided by a governmental weather agency. (CA NGSS: 3-ESS2-1)
Use data to highlight and/or propose relationships, predict outcomes, or communicate ideas.
Descriptive Statement:
The accuracy of data analysis is related to how the data is represented. Inferences or predictions based on data are less likely to be accurate if the data is insufficient, incomplete, or inaccurate or if the data is incorrect in some way. Additionally, people select aspects and subsets of data to be transformed, organized, and categorized. Students should be able to refer to data when communicating an idea, in order to highlight and/or propose relationships, predict outcomes, highlight different views and/or communicate insights and ideas. For example, students can be provided a scenario in which they are city managers who have a specific amount of funds to improve a city in California. Students can collect data of a city concerning land use, vegetation, wildlife, climate, population density, services and transportation (HSS.4.1.5) to determine and present what area needs to be focused on to improve a problem. Students can compare their data and planned use of funds with peers, clearly communicating or predict outcomes based on data collected. (CA CCCS for ELA/Literacy SL.3.1, SL.4.1, SL.5.1) Alternatively, students could record the temperature at noon each day to show that temperatures are higher in certain months of the year. If temperatures are not recorded on non-school days or are recorded incorrectly, the data would be incomplete and ideas being communicated could be inaccurate. Students may also record the day of the week on which the data was collected, but this would have no relevance to whether temperatures are higher or lower. In order to have sufficient and accurate data on which to communicate the idea, students might use data provided by a governmental weather agency. (CA NGSS: 3-ESS2-1)
Standard Identifier: 3-5.IC.20
Grade Range:
3–5
Concept:
Impacts of Computing
Subconcept:
Culture
Practice(s):
Recognizing and Defining Computational Problems (3.1)
Standard:
Discuss computing technologies that have changed the world, and express how those technologies influence, and are influenced by, cultural practices.
Descriptive Statement:
New computing technologies are created and existing technologies are modified for many reasons, including to increase their benefits, decrease their risks, and meet societal needs. Students, with guidance from their teacher, discuss topics that relate to the history of computing technologies and changes in the world due to these technologies. Topics could be based on current news content, such as robotics, wireless Internet, mobile computing devices, GPS systems, wearable computing, and how social media has influenced social and political changes. For example, students could conduct research in computing technologies that impact daily life such as self-driving cars. They engage in a collaborative discussion describing impacts of these advancements (e.g., self-driving cars could reduce crashes and decrease traffic, but there is a cost barrier to purchasing them). (CA CCSS for ELA/Literacy W.3.7, W.4.7, W.5.7, SL.3.1, SL.4.1, SL.5.1) Alternatively, students could discuss how technological advancements affected the entertainment industry and then compare and contrast the impacts on audiences. For instance, people with access to high-speed Internet may be able to choose to utilize streaming media (which may cost less than traditional media options), but those in rural areas may not have the same access and be able to reap those benefits. (VAPA Theatre Arts 4.3.2, 4.4.2)
Discuss computing technologies that have changed the world, and express how those technologies influence, and are influenced by, cultural practices.
Descriptive Statement:
New computing technologies are created and existing technologies are modified for many reasons, including to increase their benefits, decrease their risks, and meet societal needs. Students, with guidance from their teacher, discuss topics that relate to the history of computing technologies and changes in the world due to these technologies. Topics could be based on current news content, such as robotics, wireless Internet, mobile computing devices, GPS systems, wearable computing, and how social media has influenced social and political changes. For example, students could conduct research in computing technologies that impact daily life such as self-driving cars. They engage in a collaborative discussion describing impacts of these advancements (e.g., self-driving cars could reduce crashes and decrease traffic, but there is a cost barrier to purchasing them). (CA CCSS for ELA/Literacy W.3.7, W.4.7, W.5.7, SL.3.1, SL.4.1, SL.5.1) Alternatively, students could discuss how technological advancements affected the entertainment industry and then compare and contrast the impacts on audiences. For instance, people with access to high-speed Internet may be able to choose to utilize streaming media (which may cost less than traditional media options), but those in rural areas may not have the same access and be able to reap those benefits. (VAPA Theatre Arts 4.3.2, 4.4.2)
Standard Identifier: 3-5.IC.23
Grade Range:
3–5
Concept:
Impacts of Computing
Subconcept:
Safety, Law, & Ethics
Practice(s):
Communicating About Computing (7.3)
Standard:
Describe reasons creators might limit the use of their work.
Descriptive Statement:
Ethical complications arise from the opportunities provided by computing. With the ease of sending and receiving copies of media on the Internet, in formats such as video, photos, and music, students consider the opportunities for unauthorized use, such as online piracy and disregard of copyrights. The license of a downloaded image or audio file may restrict modification, require attribution, or prohibit use entirely. For example, students could take part in a collaborative discussion regarding reasons why musicians who sell their songs in digital format choose to license their work so that they can earn money for their creative efforts. If others share the songs without paying for them, the musicians do not benefit financially and may struggle to produce music in the future. (CA CCSS for ELA/Literacy SL.3.1, SL.4.1, SL.5.1) Alternatively, students could review the rights and reproduction guidelines for digital artifacts on a publicly accessible media source. They could then state an opinion with reasons they believe these guidelines are in place. (CA CCSS for ELA/Literacy W.3.1, W.4.1, W.5.1)
Describe reasons creators might limit the use of their work.
Descriptive Statement:
Ethical complications arise from the opportunities provided by computing. With the ease of sending and receiving copies of media on the Internet, in formats such as video, photos, and music, students consider the opportunities for unauthorized use, such as online piracy and disregard of copyrights. The license of a downloaded image or audio file may restrict modification, require attribution, or prohibit use entirely. For example, students could take part in a collaborative discussion regarding reasons why musicians who sell their songs in digital format choose to license their work so that they can earn money for their creative efforts. If others share the songs without paying for them, the musicians do not benefit financially and may struggle to produce music in the future. (CA CCSS for ELA/Literacy SL.3.1, SL.4.1, SL.5.1) Alternatively, students could review the rights and reproduction guidelines for digital artifacts on a publicly accessible media source. They could then state an opinion with reasons they believe these guidelines are in place. (CA CCSS for ELA/Literacy W.3.1, W.4.1, W.5.1)
Standard Identifier: 3-5.NI.5
Grade Range:
3–5
Concept:
Networks & the Internet
Subconcept:
Cybersecurity
Practice(s):
Recognizing and Defining Computational Problems (3.1)
Standard:
Describe physical and digital security measures for protecting personal information.
Descriptive Statement:
Personal information can be protected physically and digitally. Cybersecurity is the protection from unauthorized use of electronic data, or the measures taken to achieve this. Students identify what personal information is and the reasons for protecting it. Students describe physical and digital approaches for protecting personal information such as using strong passwords and biometric scanners. For example, students could engage in a collaborative discussion orally or in writing regarding topics that relate to personal cybersecurity issues. Discussion topics could be based on current events related to cybersecurity or topics that are applicable to students, such as the necessity of backing up data to guard against loss, how to create strong passwords and the importance of not sharing passwords, or why we should keep operating systems updated and use anti-virus software to protect data and systems. Students could also discuss physical measures that can be used to protect data including biometric scanners, locked doors, and physical backups. (CA CCSS for ELA/Literacy SL.3.1, SL.4.1, SL.5.1)
Describe physical and digital security measures for protecting personal information.
Descriptive Statement:
Personal information can be protected physically and digitally. Cybersecurity is the protection from unauthorized use of electronic data, or the measures taken to achieve this. Students identify what personal information is and the reasons for protecting it. Students describe physical and digital approaches for protecting personal information such as using strong passwords and biometric scanners. For example, students could engage in a collaborative discussion orally or in writing regarding topics that relate to personal cybersecurity issues. Discussion topics could be based on current events related to cybersecurity or topics that are applicable to students, such as the necessity of backing up data to guard against loss, how to create strong passwords and the importance of not sharing passwords, or why we should keep operating systems updated and use anti-virus software to protect data and systems. Students could also discuss physical measures that can be used to protect data including biometric scanners, locked doors, and physical backups. (CA CCSS for ELA/Literacy SL.3.1, SL.4.1, SL.5.1)
Standard Identifier: 6-8.AP.13
Grade Range:
6–8
Concept:
Algorithms & Programming
Subconcept:
Modularity
Practice(s):
Recognizing and Defining Computational Problems (3.2)
Standard:
Decompose problems and subproblems into parts to facilitate the design, implementation, and review of programs.
Descriptive Statement:
Decomposition facilitates program development by allowing students to focus on one piece at a time (e.g., getting input from the user, processing the data, and displaying the result to the user). Decomposition also enables different students to work on different parts at the same time. Students break down (decompose) problems into subproblems, which can be further broken down to smaller parts. Students could create an arcade game, with a title screen, a game screen, and a win/lose screen with an option to play the game again. To do this, students need to identify subproblems that accompany each screen (e.g., selecting an avatar goes in the title screen, events for controlling character action and scoring goes in the game screen, and displaying final and high score and asking whether to play again goes in the win/lose screen). Alternatively, students could decompose the problem of calculating and displaying class grades. Subproblems might include: accept input for students grades on various assignments, check for invalid grade entries, calculate per assignment averages, calculate per student averages, and display histograms of student scores for each assignment. (CA CCSS for Mathematics 6.RP.3c, 6.SP.4, 6.SP.5)
Decompose problems and subproblems into parts to facilitate the design, implementation, and review of programs.
Descriptive Statement:
Decomposition facilitates program development by allowing students to focus on one piece at a time (e.g., getting input from the user, processing the data, and displaying the result to the user). Decomposition also enables different students to work on different parts at the same time. Students break down (decompose) problems into subproblems, which can be further broken down to smaller parts. Students could create an arcade game, with a title screen, a game screen, and a win/lose screen with an option to play the game again. To do this, students need to identify subproblems that accompany each screen (e.g., selecting an avatar goes in the title screen, events for controlling character action and scoring goes in the game screen, and displaying final and high score and asking whether to play again goes in the win/lose screen). Alternatively, students could decompose the problem of calculating and displaying class grades. Subproblems might include: accept input for students grades on various assignments, check for invalid grade entries, calculate per assignment averages, calculate per student averages, and display histograms of student scores for each assignment. (CA CCSS for Mathematics 6.RP.3c, 6.SP.4, 6.SP.5)
Standard Identifier: 6-8.AP.15
Grade Range:
6–8
Concept:
Algorithms & Programming
Subconcept:
Program Development
Practice(s):
Fostering an Inclusive Computing Culture, Collaborating Around Computing (1.1, 2.3)
Standard:
Seek and incorporate feedback from team members and users to refine a solution that meets user needs.
Descriptive Statement:
Development teams that employ user-centered design processes create solutions (e.g., programs and devices) that can have a large societal impact (e.g., an app that allows people with speech difficulties to allow a smartphone to clarify their speech). Students begin to seek diverse perspectives throughout the design process to improve their computational artifacts. Considerations of the end-user may include usability, accessibility, age-appropriate content, respectful language, user perspective, pronoun use, or color contrast. For example, if students are designing an app to teach their classmates about recycling, they could first interview or survey their classmates to learn what their classmates already know about recycling and why they do or do not recycle. After building a prototype of the app, the students could then test the app with a sample of their classmates to see if they learned anything from the app and if they had difficulty using the app (e.g., trouble reading or understanding text). After gathering interview data, students could refine the app to meet classmate needs. (CA NGSS: MS-ETS1-4)
Seek and incorporate feedback from team members and users to refine a solution that meets user needs.
Descriptive Statement:
Development teams that employ user-centered design processes create solutions (e.g., programs and devices) that can have a large societal impact (e.g., an app that allows people with speech difficulties to allow a smartphone to clarify their speech). Students begin to seek diverse perspectives throughout the design process to improve their computational artifacts. Considerations of the end-user may include usability, accessibility, age-appropriate content, respectful language, user perspective, pronoun use, or color contrast. For example, if students are designing an app to teach their classmates about recycling, they could first interview or survey their classmates to learn what their classmates already know about recycling and why they do or do not recycle. After building a prototype of the app, the students could then test the app with a sample of their classmates to see if they learned anything from the app and if they had difficulty using the app (e.g., trouble reading or understanding text). After gathering interview data, students could refine the app to meet classmate needs. (CA NGSS: MS-ETS1-4)
Standard Identifier: 6-8.AP.16
Grade Range:
6–8
Concept:
Algorithms & Programming
Subconcept:
Program Development
Practice(s):
Developing and Using Abstractions, Creating Computational Artifacts, Communicating About Computing (4.2, 5.2, 7.3)
Standard:
Incorporate existing code, media, and libraries into original programs, and give attribution.
Descriptive Statement:
Building on the work of others enables students to produce more interesting and powerful creations. Students use portions of code, algorithms, digital media, and/or data created by others in their own programs and websites. They give attribution to the original creators to acknowledge their contributions. For example, when creating a side-scrolling game, students may incorporate portions of code that create a realistic jump movement from another person's game, and they may also import Creative Commons-licensed images to use in the background. Alternatively, when creating a website to demonstrate their knowledge of historical figures from the Civil War, students may use a professionally-designed template and public domain images of historical figures. (HSS.8.10.5) Additionally, students could import libraries and connect to web application program interfaces (APIs) to make their own programming processes more efficient and reduce the number of bugs (e.g., to check whether the user input is a valid date, to input the current temperature from another city).
Incorporate existing code, media, and libraries into original programs, and give attribution.
Descriptive Statement:
Building on the work of others enables students to produce more interesting and powerful creations. Students use portions of code, algorithms, digital media, and/or data created by others in their own programs and websites. They give attribution to the original creators to acknowledge their contributions. For example, when creating a side-scrolling game, students may incorporate portions of code that create a realistic jump movement from another person's game, and they may also import Creative Commons-licensed images to use in the background. Alternatively, when creating a website to demonstrate their knowledge of historical figures from the Civil War, students may use a professionally-designed template and public domain images of historical figures. (HSS.8.10.5) Additionally, students could import libraries and connect to web application program interfaces (APIs) to make their own programming processes more efficient and reduce the number of bugs (e.g., to check whether the user input is a valid date, to input the current temperature from another city).
Standard Identifier: 6-8.AP.17
Grade Range:
6–8
Concept:
Algorithms & Programming
Subconcept:
Program Development
Practice(s):
Testing and Refining Computational Artifacts (6.1)
Standard:
Systematically test and refine programs using a range of test cases.
Descriptive Statement:
Use cases and test cases are created to evaluate whether programs function as intended. At this level, students develop use cases and test cases with teacher guidance. Testing should become a deliberate process that is more iterative, systematic, and proactive than at lower levels. For example, students test programs by considering potential errors, such as what will happen if a user enters invalid input (e.g., negative numbers and 0 instead of positive numbers). Alternatively, in an interactive program, students could test that the character cannot move off of the screen in any direction, cannot move through walls, and can interact with other characters. They then adjust character behavior as needed.
Systematically test and refine programs using a range of test cases.
Descriptive Statement:
Use cases and test cases are created to evaluate whether programs function as intended. At this level, students develop use cases and test cases with teacher guidance. Testing should become a deliberate process that is more iterative, systematic, and proactive than at lower levels. For example, students test programs by considering potential errors, such as what will happen if a user enters invalid input (e.g., negative numbers and 0 instead of positive numbers). Alternatively, in an interactive program, students could test that the character cannot move off of the screen in any direction, cannot move through walls, and can interact with other characters. They then adjust character behavior as needed.
Showing 21 - 30 of 80 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881