Computer Science Standards
Results
Showing 11 - 20 of 39 Standards
Standard Identifier: 3-5.NI.4
Grade Range:
3–5
Concept:
Networks & the Internet
Subconcept:
Network Communication & Organization
Practice(s):
Developing and Using Abstractions (4.4)
Standard:
Model how information is broken down into smaller pieces, transmitted as packets through multiple devices over networks and the Internet, and reassembled at the destination.
Descriptive Statement:
Information is sent and received over physical or wireless paths. It is broken down into smaller pieces called packets, which are sent independently and reassembled at the destination. Students demonstrate their understanding of this flow of information by, for instance, drawing a model of the way packets are transmitted, programming an animation to show how packets are transmitted, or demonstrating this through an unplugged activity in which they physically act this out. For example, students could design a structure using building blocks or other materials with the intention of re-engineering it in another location, just as early Americans did after the intercontinental railroad was constructed in the 1850s (HSS.4.4.1, 4.4.2). Students could deconstruct the designed structure, place materials into specific containers (or plastic bags/brown paper bags/etc.), and develop instructions on how to recreate the structure once each container arrives at its intended destination. (CA NGSS: 3-5-ETS1) For example, students could cut up a map of the United States by state lines. Students could then place the states in envelopes and transmit the "packets" through a physical network, represented by multiple students spreading out in arms reach of at least two others. At the destination, the student who receives the packets resassembles the individual states back into a map of the United States. (HSS 5.9) Alternatively, students could perform a similar activity with a diatonic scale, cutting the scale into individual notes. Each note, in order, should be placed into a numbered envelope based on its location on the scale. These envelopes can be transmitted across the network of students and reassembled at the destination. (VAPA Music 4.1.2)
Model how information is broken down into smaller pieces, transmitted as packets through multiple devices over networks and the Internet, and reassembled at the destination.
Descriptive Statement:
Information is sent and received over physical or wireless paths. It is broken down into smaller pieces called packets, which are sent independently and reassembled at the destination. Students demonstrate their understanding of this flow of information by, for instance, drawing a model of the way packets are transmitted, programming an animation to show how packets are transmitted, or demonstrating this through an unplugged activity in which they physically act this out. For example, students could design a structure using building blocks or other materials with the intention of re-engineering it in another location, just as early Americans did after the intercontinental railroad was constructed in the 1850s (HSS.4.4.1, 4.4.2). Students could deconstruct the designed structure, place materials into specific containers (or plastic bags/brown paper bags/etc.), and develop instructions on how to recreate the structure once each container arrives at its intended destination. (CA NGSS: 3-5-ETS1) For example, students could cut up a map of the United States by state lines. Students could then place the states in envelopes and transmit the "packets" through a physical network, represented by multiple students spreading out in arms reach of at least two others. At the destination, the student who receives the packets resassembles the individual states back into a map of the United States. (HSS 5.9) Alternatively, students could perform a similar activity with a diatonic scale, cutting the scale into individual notes. Each note, in order, should be placed into a numbered envelope based on its location on the scale. These envelopes can be transmitted across the network of students and reassembled at the destination. (VAPA Music 4.1.2)
Standard Identifier: 3-5.NI.6
Grade Range:
3–5
Concept:
Networks & the Internet
Subconcept:
Cybersecurity
Practice(s):
Developing and Using Abstractions (4.4)
Standard:
Create patterns to protect information from unauthorized access.
Descriptive Statement:
Encryption is the process of converting information or data into a code, especially to prevent unauthorized access. At this level, students use patterns as a code for encryption, to protect information. Patterns should be decodable to the party for whom the message is intended, but difficult or impossible for those with unauthorized access. For example, students could create encrypted messages via flashing a flashlight in Morse code. Other students could decode this established language even if it wasn't meant for them. To model the idea of protecting data, students should create their own variations on or changes to Morse code. This ensures that when a member of that group flashes a message only other members of their group can decode it, even if other students in the room can see it. (CA NGSS: 4-PS4-3) Alternatively, students could engage in a CS Unplugged activity that models public key encryption: One student puts a paper containing a written secret in a box, locks it with a padlock, and hands the box to a second student. Student 2 puts on a second padlock and hands it back. Student 1 removes her lock and hands the box to student 2 again. Student 2 removes his lock, opens the box, and has access to the secret that student 1 sent him. Because the box always contained at least one lock while in transit, an outside party never had the opportunity to see the message and it is protected.
Create patterns to protect information from unauthorized access.
Descriptive Statement:
Encryption is the process of converting information or data into a code, especially to prevent unauthorized access. At this level, students use patterns as a code for encryption, to protect information. Patterns should be decodable to the party for whom the message is intended, but difficult or impossible for those with unauthorized access. For example, students could create encrypted messages via flashing a flashlight in Morse code. Other students could decode this established language even if it wasn't meant for them. To model the idea of protecting data, students should create their own variations on or changes to Morse code. This ensures that when a member of that group flashes a message only other members of their group can decode it, even if other students in the room can see it. (CA NGSS: 4-PS4-3) Alternatively, students could engage in a CS Unplugged activity that models public key encryption: One student puts a paper containing a written secret in a box, locks it with a padlock, and hands the box to a second student. Student 2 puts on a second padlock and hands it back. Student 1 removes her lock and hands the box to student 2 again. Student 2 removes his lock, opens the box, and has access to the secret that student 1 sent him. Because the box always contained at least one lock while in transit, an outside party never had the opportunity to see the message and it is protected.
Standard Identifier: 6-8.AP.10
Grade Range:
6–8
Concept:
Algorithms & Programming
Subconcept:
Algorithms
Practice(s):
Developing and Using Abstractions (4.1, 4.4)
Standard:
Use flowcharts and/or pseudocode to design and illustrate algorithms that solve complex problems.
Descriptive Statement:
Complex problems are problems that would be difficult for students to solve without breaking them down into multiple steps. Flowcharts and pseudocode are used to design and illustrate the breakdown of steps in an algorithm. Students design and illustrate algorithms using pseudocode and/or flowcharts that organize and sequence the breakdown of steps for solving complex problems. For example, students might use a flowchart to illustrate an algorithm that produces a recommendation for purchasing sneakers based on inputs such as size, colors, brand, comfort, and cost. Alternatively, students could write pseudocode to express an algorithm for suggesting their outfit for the day, based on inputs such as the weather, color preferences, and day of the week.
Use flowcharts and/or pseudocode to design and illustrate algorithms that solve complex problems.
Descriptive Statement:
Complex problems are problems that would be difficult for students to solve without breaking them down into multiple steps. Flowcharts and pseudocode are used to design and illustrate the breakdown of steps in an algorithm. Students design and illustrate algorithms using pseudocode and/or flowcharts that organize and sequence the breakdown of steps for solving complex problems. For example, students might use a flowchart to illustrate an algorithm that produces a recommendation for purchasing sneakers based on inputs such as size, colors, brand, comfort, and cost. Alternatively, students could write pseudocode to express an algorithm for suggesting their outfit for the day, based on inputs such as the weather, color preferences, and day of the week.
Standard Identifier: 6-8.AP.14
Grade Range:
6–8
Concept:
Algorithms & Programming
Subconcept:
Modularity
Practice(s):
Developing and Using Abstractions (4.1, 4.3)
Standard:
Create procedures with parameters to organize code and make it easier to reuse.
Descriptive Statement:
Procedures support modularity in developing programs. Parameters can provide greater flexibility, reusability, and efficient use of resources. Students create procedures and/or functions that are used multiple times within a program to repeat groups of instructions. They generalize the procedures and/or functions by defining parameters that generate different outputs for a wide range of inputs. For example, students could create a procedure to draw a circle which involves many instructions, but all of them can be invoked with one instruction, such as “drawCircle.” By adding a radius parameter, students can easily draw circles of different sizes. (CA CCSS for Mathematics 7.G.4) Alternatively, calculating the area of a regular polygon requires multiple steps. Students could write a function that accepts the number and length of the sides as parameters and then calculates the area of the polygon. This function can then be re-used inside any program to calculate the area of a regular polygon. (CA CCSS for Mathematics 6.G.1)
Create procedures with parameters to organize code and make it easier to reuse.
Descriptive Statement:
Procedures support modularity in developing programs. Parameters can provide greater flexibility, reusability, and efficient use of resources. Students create procedures and/or functions that are used multiple times within a program to repeat groups of instructions. They generalize the procedures and/or functions by defining parameters that generate different outputs for a wide range of inputs. For example, students could create a procedure to draw a circle which involves many instructions, but all of them can be invoked with one instruction, such as “drawCircle.” By adding a radius parameter, students can easily draw circles of different sizes. (CA CCSS for Mathematics 7.G.4) Alternatively, calculating the area of a regular polygon requires multiple steps. Students could write a function that accepts the number and length of the sides as parameters and then calculates the area of the polygon. This function can then be re-used inside any program to calculate the area of a regular polygon. (CA CCSS for Mathematics 6.G.1)
Standard Identifier: 6-8.AP.16
Grade Range:
6–8
Concept:
Algorithms & Programming
Subconcept:
Program Development
Practice(s):
Developing and Using Abstractions, Creating Computational Artifacts, Communicating About Computing (4.2, 5.2, 7.3)
Standard:
Incorporate existing code, media, and libraries into original programs, and give attribution.
Descriptive Statement:
Building on the work of others enables students to produce more interesting and powerful creations. Students use portions of code, algorithms, digital media, and/or data created by others in their own programs and websites. They give attribution to the original creators to acknowledge their contributions. For example, when creating a side-scrolling game, students may incorporate portions of code that create a realistic jump movement from another person's game, and they may also import Creative Commons-licensed images to use in the background. Alternatively, when creating a website to demonstrate their knowledge of historical figures from the Civil War, students may use a professionally-designed template and public domain images of historical figures. (HSS.8.10.5) Additionally, students could import libraries and connect to web application program interfaces (APIs) to make their own programming processes more efficient and reduce the number of bugs (e.g., to check whether the user input is a valid date, to input the current temperature from another city).
Incorporate existing code, media, and libraries into original programs, and give attribution.
Descriptive Statement:
Building on the work of others enables students to produce more interesting and powerful creations. Students use portions of code, algorithms, digital media, and/or data created by others in their own programs and websites. They give attribution to the original creators to acknowledge their contributions. For example, when creating a side-scrolling game, students may incorporate portions of code that create a realistic jump movement from another person's game, and they may also import Creative Commons-licensed images to use in the background. Alternatively, when creating a website to demonstrate their knowledge of historical figures from the Civil War, students may use a professionally-designed template and public domain images of historical figures. (HSS.8.10.5) Additionally, students could import libraries and connect to web application program interfaces (APIs) to make their own programming processes more efficient and reduce the number of bugs (e.g., to check whether the user input is a valid date, to input the current temperature from another city).
Standard Identifier: 6-8.DA.7
Grade Range:
6–8
Concept:
Data & Analysis
Subconcept:
Storage
Practice(s):
Developing and Using Abstractions (4.4)
Standard:
Represent data in multiple ways.
Descriptive Statement:
Computers store data as sequences of 0s and 1s (bits). Software translates to and from this low-level representation to higher levels that are understandable by people. Furthermore, higher level data can be represented in multiple ways, such as the digital display of a color and its corresponding numeric RGB value, or a bar graph, a pie chart, and table representation of the same data in a spreadsheet. For example, students could use a color picker to explore the correspondence between the digital display or name of a color (high-level representations) and its RGB value or hex code (low-level representation). Alternatively, students could translate a word (high-level representation) into Morse code or its corresponding sequence of ASCII codes (low-level representation).
Represent data in multiple ways.
Descriptive Statement:
Computers store data as sequences of 0s and 1s (bits). Software translates to and from this low-level representation to higher levels that are understandable by people. Furthermore, higher level data can be represented in multiple ways, such as the digital display of a color and its corresponding numeric RGB value, or a bar graph, a pie chart, and table representation of the same data in a spreadsheet. For example, students could use a color picker to explore the correspondence between the digital display or name of a color (high-level representations) and its RGB value or hex code (low-level representation). Alternatively, students could translate a word (high-level representation) into Morse code or its corresponding sequence of ASCII codes (low-level representation).
Standard Identifier: 6-8.DA.9
Grade Range:
6–8
Concept:
Data & Analysis
Subconcept:
Inference & Models
Practice(s):
Developing and Using Abstractions, Testing and Refining Computational Artifacts (4.4, 6.1)
Standard:
Test and analyze the effects of changing variables while using computational models.
Descriptive Statement:
Variables within a computational model may be changed, in order to alter a computer simulation or to more accurately represent how various data is related. Students interact with a given model, make changes to identified model variables, and observe and reflect upon the results. For example, students could test a program that makes a robot move on a track by making changes to variables (e.g., height and angle of track, size and mass of the robot) and discussing how these changes affect how far the robot travels. (CA NGSS: MS-PS2-2) Alternatively, students could test a game simulation and change variables (e.g., skill of simulated players, nature of opening moves) and analyze how these changes affect who wins the game. (CA NGSS: MS-ETS1-3) Additionally, students could modify a model for predicting the likely color of the next pick from a bag of colored candy and analyze the effects of changing variables representing the common color ratios in a typical bag of candy. (CA CCSS for Mathematics 7.SP.7, 8.SP.4)
Test and analyze the effects of changing variables while using computational models.
Descriptive Statement:
Variables within a computational model may be changed, in order to alter a computer simulation or to more accurately represent how various data is related. Students interact with a given model, make changes to identified model variables, and observe and reflect upon the results. For example, students could test a program that makes a robot move on a track by making changes to variables (e.g., height and angle of track, size and mass of the robot) and discussing how these changes affect how far the robot travels. (CA NGSS: MS-PS2-2) Alternatively, students could test a game simulation and change variables (e.g., skill of simulated players, nature of opening moves) and analyze how these changes affect who wins the game. (CA NGSS: MS-ETS1-3) Additionally, students could modify a model for predicting the likely color of the next pick from a bag of colored candy and analyze the effects of changing variables representing the common color ratios in a typical bag of candy. (CA CCSS for Mathematics 7.SP.7, 8.SP.4)
Standard Identifier: 6-8.NI.4
Grade Range:
6–8
Concept:
Networks & the Internet
Subconcept:
Network Communication & Organization
Practice(s):
Developing and Using Abstractions (4.4)
Standard:
Model the role of protocols in transmitting data across networks and the Internet.
Descriptive Statement:
Protocols are rules that define how messages between computers are sent. They determine how quickly and securely information is transmitted across networks, as well as how to handle errors in transmission. Students model how data is sent using protocols to choose the fastest path and to deal with missing information. Knowledge of the details of how specific protocols work is not expected. The priority at this grade level is understanding the purpose of protocols and how they enable efficient and errorless communication. For example, students could devise a plan for sending data representing a textual message and devise a plan for resending lost information. Alternatively, students could devise a plan for sending data to represent a picture, and devise a plan for interpreting the image when pieces of the data are missing. Additionally, students could model the speed of sending messages by Bluetooth, Wi-Fi, or cellular networks and describe ways errors in data transmission can be detected and dealt with.
Model the role of protocols in transmitting data across networks and the Internet.
Descriptive Statement:
Protocols are rules that define how messages between computers are sent. They determine how quickly and securely information is transmitted across networks, as well as how to handle errors in transmission. Students model how data is sent using protocols to choose the fastest path and to deal with missing information. Knowledge of the details of how specific protocols work is not expected. The priority at this grade level is understanding the purpose of protocols and how they enable efficient and errorless communication. For example, students could devise a plan for sending data representing a textual message and devise a plan for resending lost information. Alternatively, students could devise a plan for sending data to represent a picture, and devise a plan for interpreting the image when pieces of the data are missing. Additionally, students could model the speed of sending messages by Bluetooth, Wi-Fi, or cellular networks and describe ways errors in data transmission can be detected and dealt with.
Standard Identifier: 6-8.NI.6
Grade Range:
6–8
Concept:
Networks & the Internet
Subconcept:
Cybersecurity
Practice(s):
Developing and Using Abstractions (4.4)
Standard:
Apply multiple methods of information protection to model the secure transmission of information.
Descriptive Statement:
Digital information is protected using a variety of cryptographic techniques. Cryptography is essential to many models of cybersecurity. At its core, cryptography has a mathematical foundation. Cryptographic encryption can be as simple as letter substitution or as complicated as modern methods used to secure networks and the Internet. Students encode and decode messages using encryption methods, and explore different levels of complexity used to hide or secure information. For example, students could identify methods of secret communication used during the Revolutionary War (e.g., ciphers, secret codes, invisible ink, hidden letters) and then secure their own methods such as substitution ciphers or steganography (i.e., hiding messages inside a picture or other data) to compose a message from either the Continental Army or British Army. (HSS.8.1) Alternatively, students could explore functions and inverse functions for encryption and decryption and consider functions that are complex enough to keep data secure from their peers. (CA CCSS for Mathematics 8.F.1)
Apply multiple methods of information protection to model the secure transmission of information.
Descriptive Statement:
Digital information is protected using a variety of cryptographic techniques. Cryptography is essential to many models of cybersecurity. At its core, cryptography has a mathematical foundation. Cryptographic encryption can be as simple as letter substitution or as complicated as modern methods used to secure networks and the Internet. Students encode and decode messages using encryption methods, and explore different levels of complexity used to hide or secure information. For example, students could identify methods of secret communication used during the Revolutionary War (e.g., ciphers, secret codes, invisible ink, hidden letters) and then secure their own methods such as substitution ciphers or steganography (i.e., hiding messages inside a picture or other data) to compose a message from either the Continental Army or British Army. (HSS.8.1) Alternatively, students could explore functions and inverse functions for encryption and decryption and consider functions that are complex enough to keep data secure from their peers. (CA CCSS for Mathematics 8.F.1)
Standard Identifier: 9-12.AP.12
Grade Range:
9–12
Concept:
Algorithms & Programming
Subconcept:
Algorithms
Practice(s):
Developing and Using Abstractions, Creating Computational Artifacts (4.2, 5.1)
Standard:
Design algorithms to solve computational problems using a combination of original and existing algorithms.
Descriptive Statement:
Knowledge of common algorithms improves how people develop software, secure data, and store information. Some algorithms may be easier to implement in a particular programming language, work faster, require less memory to store data, and be applicable in a wider variety of situations than other algorithms. Algorithms used to search and sort data are common in a variety of software applications. For example, students could design an algorithm to calculate and display various sports statistics and use common sorting or mathematical algorithms (e.g., average) in the design of the overall algorithm. Alternatively, students could design an algorithm to implement a game and use existing randomization algorithms to place pieces randomly in starting positions or to control the "roll" of a dice or selection of a "card" from a deck.
Design algorithms to solve computational problems using a combination of original and existing algorithms.
Descriptive Statement:
Knowledge of common algorithms improves how people develop software, secure data, and store information. Some algorithms may be easier to implement in a particular programming language, work faster, require less memory to store data, and be applicable in a wider variety of situations than other algorithms. Algorithms used to search and sort data are common in a variety of software applications. For example, students could design an algorithm to calculate and display various sports statistics and use common sorting or mathematical algorithms (e.g., average) in the design of the overall algorithm. Alternatively, students could design an algorithm to implement a game and use existing randomization algorithms to place pieces randomly in starting positions or to control the "roll" of a dice or selection of a "card" from a deck.
Showing 11 - 20 of 39 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881