Skip to main content
California Department of Education Logo

Computer Science Standards




Results


Showing 61 - 70 of 105 Standards

Standard Identifier: 9-12.AP.17

Grade Range: 9–12
Concept: Algorithms & Programming
Subconcept: Modularity
Practice(s): Developing and Using Abstractions, Creating Computational Artifacts (4.3, 5.2)

Standard:
Create computational artifacts using modular design.

Descriptive Statement:
Computational artifacts are created by combining and modifying existing computational artifacts and/or by developing new artifacts. To reduce complexity, large programs can be designed as systems of interacting modules, each with a specific role, coordinating for a common overall purpose. Students should create computational artifacts with interacting procedures, modules, and/or libraries. For example, students could incorporate a physics library into an animation of bouncing balls. Alternatively, students could integrate open-source JavaScript libraries to expand the functionality of a web application. Additionally, students could create their own game to teach Spanish vocabulary words using their own modular design (e.g., including methods to: control scoring, manage wordlists, manage access to different game levels, take input from the user, etc.).

Standard Identifier: 9-12.AP.18

Grade Range: 9–12
Concept: Algorithms & Programming
Subconcept: Program Development
Practice(s): Fostering an Inclusive Computing Culture, Creating Computational Artifacts (1.1, 5.1)

Standard:
Systematically design programs for broad audiences by incorporating feedback from users.

Descriptive Statement:
Programmers use a systematic design and review process to meet the needs of a broad audience. The process includes planning to meet user needs, developing software for broad audiences, testing users from a cross-section of the audience, and refining designs based on feedback. For example, students could create a user satisfaction survey and brainstorm distribution methods to collect feedback about a mobile application. After collecting feedback from a diverse audience, students could incorporate feedback into their product design. Alternatively, while developing an e-textiles project with human touch sensors, students could collect data from peers and identify design changes needed to improve usability by users of different needs.

Standard Identifier: 9-12.AP.19

Grade Range: 9–12
Concept: Algorithms & Programming
Subconcept: Program Development
Practice(s): Communicating About Computing (7.3)

Standard:
Explain the limitations of licenses that restrict use of computational artifacts when using resources such as libraries.

Descriptive Statement:
Software licenses include copyright, freeware, and open-source licensing schemes. Licenses are used to protect the intellectual property of the author while also defining accessibility of the code. Students consider licensing implications for their own work, especially when incorporating libraries and other resources. For example, students might consider two software libraries that address a similar need, justifying their choice of one over the other. The choice could be based upon least restrictive licensing or further protections for their own intellectual property.

Standard Identifier: 9-12.AP.22

Grade Range: 9–12
Concept: Algorithms & Programming
Subconcept: Program Development
Practice(s): Communicating About Computing (7.2)

Standard:
Document decisions made during the design process using text, graphics, presentations, and/or demonstrations in the development of complex programs.

Descriptive Statement:
Complex programs are often iteratively designed as systems of interacting modules, each with a specific role, coordinating for a common overall purpose. Comments are included in code both to document the purpose of modules as well as the implementation details within a module. Together these support documentation of the design process. Students use resources such as libraries and tools to edit and manage parts of the program and corresponding documentation. For example, during development of a computational artifact students could comment their code (with date, modification, and rationale), sketch a flowchart to summarize control flow in a code journal, and share ideas and updates on a white board. Students may document their logic by explaining the development process and presenting to the class. The presentation could include photos of their white board, a video or screencast explaining the development process, or recorded audio description.

Standard Identifier: 9-12.CS.1

Grade Range: 9–12
Concept: Computing Systems
Subconcept: Devices
Practice(s): Developing and Using Abstractions (4.1)

Standard:
Describe ways in which abstractions hide the underlying implementation details of computing systems to simplify user experiences.

Descriptive Statement:
An abstraction is a representation of an idea or phenomenon that hides details irrelevant to the question at hand. Computing systems, both stand alone and embedded in products, are often integrated with other systems to simplify user experiences. For example, students could identify geolocation hardware embedded in a smartphone and describe how this simplifies the users experience since the user does not have to enter her own location on the phone. Alternatively, students might select an embedded device such as a car stereo, identify the types of data (e.g., radio station presets, volume level) and procedures (e.g., increase volume, store/recall saved station, mute) it includes, and explain how the implementation details are hidden from the user.

Standard Identifier: 9-12.CS.2

Grade Range: 9–12
Concept: Computing Systems
Subconcept: Hardware & Software
Practice(s): Developing and Using Abstractions (4.1)

Standard:
Compare levels of abstraction and interactions between application software, system software, and hardware.

Descriptive Statement:
At its most basic level, a computer is composed of physical hardware on which software runs. Multiple layers of software are built upon various layers of hardware. Layers manage interactions and complexity in the computing system. System software manages a computing device's resources so that software can interact with hardware. Application software communicates with the user and the system software to accomplish its purpose. Students compare and describe how application software, system software, and hardware interact. For example, students could compare how various levels of hardware and software interact when a picture is to be taken on a smartphone. Systems software provides low-level commands to operate the camera hardware, but the application software interacts with system software at a higher level by requesting a common image file format (e.g., .png) that the system software provides.

Standard Identifier: 9-12.DA.10

Grade Range: 9–12
Concept: Data & Analysis
Subconcept: Collection, Visualization, & Transformation
Practice(s): Creating Computational Artifacts (5.2)

Standard:
Create data visualizations to help others better understand real-world phenomena.

Descriptive Statement:
People transform, generalize, simplify, and present large data sets in different ways to influence how other people interpret and understand the underlying information. Students select relevant data from large or complex data sets in support of a claim or to communicate the information in a more sophisticated manner. Students use software tools or programming to perform a range of mathematical operations to transform and analyze data and create powerful data visualizations (that reveal patterns in the data). For example, students could create data visualizations to reveal patterns in voting data by state, gender, political affiliation, or socioeconomic status. Alternatively, students could use U.S. government data on criticially endangered animals to visualize population change over time.

Standard Identifier: 9-12.DA.11

Grade Range: 9–12
Concept: Data & Analysis
Subconcept: Inference & Models
Practice(s): Developing and Using Abstractions, Testing and Refining Computational Artifacts (4.4, 6.3)

Standard:
Refine computational models to better represent the relationships among different elements of data collected from a phenomenon or process.

Descriptive Statement:
Computational models are used to make predictions about processes or phenomena based on selected data and features. They allow people to investigate the relationships among different variables to understand a system. Predictions are tested to validate models. Students evaluate these models against real-world observations. For example, students could use a population model that allows them to speculate about interactions among different species, evaluate the model based on data gathered from nature, and then refine the model to reflect more complex and realistic interactions.

Standard Identifier: 9-12.DA.8

Grade Range: 9–12
Concept: Data & Analysis
Subconcept: Storage
Practice(s): Developing and Using Abstractions (4.1)

Standard:
Translate between different representations of data abstractions of real-world phenomena, such as characters, numbers, and images.

Descriptive Statement:
Computers represent complex real-world concepts such as characters, numbers, and images through various abstractions. Students translate between these different levels of data representations. For example, students could convert an HTML (Hyper Text Markup Language) tag for red font into RGB (Red Green Blue), HEX (Hexadecimal Color Code), HSL (Hue Saturation Lightness), RGBA( Red Green Blue Alpha), or HSLA (Hue Saturation Lightness and Alpha) representations. Alternatively, students could convert the standard representation of a character such as ! into ASCII or Unicode.

Standard Identifier: 9-12.DA.9

Grade Range: 9–12
Concept: Data & Analysis
Subconcept: Storage
Practice(s): Recognizing and Defining Computational Problems (3.3)

Standard:
Describe tradeoffs associated with how data elements are organized and stored.

Descriptive Statement:
People make choices about how data elements are organized and where data is stored. These choices affect cost, speed, reliability, accessibility, privacy, and integrity. Students describe implications for a given data organziation or storage choice in light of a specific problem. For example, students might consider the cost, speed, reliability, accessibility, privacy, and integrity tradeoffs between storing photo data on a mobile device versus in the cloud. Alternatively, students might compare the tradeoffs between file size and image quality of various image file formats and how choice of format may be infuenced by the device on which it is to be accessed (e.g., smartphone, computer).

Showing 61 - 70 of 105 Standards


Questions: Curriculum Frameworks and Instructional Resources Division | CFIRD@cde.ca.gov | 916-319-0881