Skip to main content
California Department of Education Logo

Computer Science Standards




Results


Showing 21 - 30 of 52 Standards

Standard Identifier: 6-8.CS.3

Grade Range: 6–8
Concept: Computing Systems
Subconcept: Troubleshooting
Practice(s): Testing and Refining Computational Artifacts (6.2)

Standard:
Systematically apply troubleshooting strategies to identify and resolve hardware and software problems in computing systems.

Descriptive Statement:
When problems occur within computing systems, it is important to take a structured, step-by-step approach to effectively solve the problem and ensure that potential solutions are not overlooked. Examples of troubleshooting strategies include following a troubleshooting flow diagram, making changes to software to see if hardware will work, checking connections and settings, and swapping in working components. Since a computing device may interact with interconnected devices within a system, problems may not be due to the specific computing device itself but to devices connected to it. For example, students could work through a checklist of solutions for connectivity problems in a lab of computers connected wirelessly or through physical cables. They could also search for technical information online and engage in technical reading to create troubleshooting documents that they then apply. (CA CCSS for ELA/Literacy RST.6-8.10) Alternatively, students could explore and utilize operating system tools to reset a computer's default language to English. Additionally, students could swap out an externally-controlled sensor giving fluctuating readings with a new sensor to check whether there is a hardware problem.

Standard Identifier: 6-8.DA.8

Grade Range: 6–8
Concept: Data & Analysis
Subconcept: Collection, Visualization, & Transformation
Practice(s): Communicating About Computing (7.1)

Standard:
Collect data using computational tools and transform the data to make it more useful.

Descriptive Statement:
Data collection has become easier and more ubiquitous. The cleaning of data is an important transformation for ensuring consistent format, reducing noise and errors (e.g., removing irrelevant responses in a survey), and/or making it easier for computers to process. Students build on their ability to organize and present data visually to support a claim, understanding when and how to transform data so information can be more easily extracted. Students also transform data to highlight or expose relationships. For example, students could use computational tools to collect data from their peers regarding the percentage of time technology is used for school work and entertainment, and then create digital displays of their data and findings. Students could then transform the data to highlight relationships representing males and females as percentages of a whole instead of as individual counts. (CA CCSS for Mathematics 6.SP.4, 7.SP.3, 8.SP.1, 8.SP.4) Alternatively, students could collect data from online forms and surveys, from a sensor, or by scraping a web page, and then transform the data to expose relationships. They could highlight the distribution of data (e.g., words on a web page, readings from a sensor) by giving quantitative measures of center and variability. (CA CCSS for Mathematics 6.SP.5.c, 7.SP.4)

Standard Identifier: 6-8.DA.9

Grade Range: 6–8
Concept: Data & Analysis
Subconcept: Inference & Models
Practice(s): Developing and Using Abstractions, Testing and Refining Computational Artifacts (4.4, 6.1)

Standard:
Test and analyze the effects of changing variables while using computational models.

Descriptive Statement:
Variables within a computational model may be changed, in order to alter a computer simulation or to more accurately represent how various data is related. Students interact with a given model, make changes to identified model variables, and observe and reflect upon the results. For example, students could test a program that makes a robot move on a track by making changes to variables (e.g., height and angle of track, size and mass of the robot) and discussing how these changes affect how far the robot travels. (CA NGSS: MS-PS2-2) Alternatively, students could test a game simulation and change variables (e.g., skill of simulated players, nature of opening moves) and analyze how these changes affect who wins the game. (CA NGSS: MS-ETS1-3) Additionally, students could modify a model for predicting the likely color of the next pick from a bag of colored candy and analyze the effects of changing variables representing the common color ratios in a typical bag of candy. (CA CCSS for Mathematics 7.SP.7, 8.SP.4)

Standard Identifier: 6-8.IC.20

Grade Range: 6–8
Concept: Impacts of Computing
Subconcept: Culture
Practice(s): Communicating About Computing (7.2)

Standard:
Compare tradeoffs associated with computing technologies that affect people's everyday activities and career options.

Descriptive Statement:
Advancements in computer technology are neither wholly positive nor negative. However, the ways that people use computing technologies have tradeoffs. Students consider current events related to broad ideas, including privacy, communication, and automation. For example, students could compare and contrast the impacts of computing technologies with the impacts of other systems developed throughout history such as the Pony Express and US Postal System. (HSS.7.8.4) Alternatively, students could identify tradeoffs for both personal and professional uses of a variety of computing technologies. For instance, driverless cars can increase convenience and reduce accidents, but they may be susceptible to hacking. The emerging industry will reduce the number of taxi and shared-ride drivers, but may create more software engineering and cybersecurity jobs.

Standard Identifier: 6-8.IC.23

Grade Range: 6–8
Concept: Impacts of Computing
Subconcept: Safety, Law, & Ethics
Practice(s): Communicating About Computing (7.3)

Standard:
Compare tradeoffs associated with licenses for computational artifacts to balance the protection of the creators' rights and the ability for others to use and modify the artifacts.

Descriptive Statement:
Using and building on the works of others allows people to create meaningful works and fosters innovation. Copyright is an important law that helps protect the rights of creators so they receive credit and get paid for their work. Creative Commons is a kind of copyright that makes it easier for people to copy, share, and build on creative work, as long as they give credit for it. There are different kinds of Creative Commons licenses that allow people to do things such as change, remix, or make money from their work. As creators, students can pick and choose how they want their work to be used, and then create a Creative Commons license that they include in their work. For example, students could create interactive animations to educate others on bullying or protecting the environment. They then select an appropriate license to reflect how they want their program to be used by others (e.g., allow others to use their work and alter it, as long as they do not make a profit from it). Students use established methods to both protect their artifacts and attribute use of protected artifacts.

Standard Identifier: 6-8.IC.24

Grade Range: 6–8
Concept: Impacts of Computing
Subconcept: Safety, Law, & Ethics
Practice(s): Communicating About Computing (7.2)

Standard:
Compare tradeoffs between allowing information to be public and keeping information private and secure.

Descriptive Statement:
While it is valuable to establish, maintain, and strengthen connections between people online, security attacks often start with intentionally or unintentionally providing personal information online. Students identify situations where the value of keeping information public outweighs privacy concerns, and vice versa. They also recognize practices such as phishing and social engineering and explain best practices to defend against them. For example, students could discuss the benefits of artists and designers displaying their work online to reach a broader audience. Students could also compare the tradeoffs of making a shared file accessible to anyone versus restricting it to specific accounts. (CA CCSS for ELA/Literacy SL.6.1, SL.7.1, SL.8.1) Alternatively, students could discuss the benefits and dangers of the increased accessibility of information available on the internet, and then compare this to the advantages and disadvantages of the introduction of the printing press in society. (HSS.7.8.4)

Standard Identifier: 9-12.AP.19

Grade Range: 9–12
Concept: Algorithms & Programming
Subconcept: Program Development
Practice(s): Communicating About Computing (7.3)

Standard:
Explain the limitations of licenses that restrict use of computational artifacts when using resources such as libraries.

Descriptive Statement:
Software licenses include copyright, freeware, and open-source licensing schemes. Licenses are used to protect the intellectual property of the author while also defining accessibility of the code. Students consider licensing implications for their own work, especially when incorporating libraries and other resources. For example, students might consider two software libraries that address a similar need, justifying their choice of one over the other. The choice could be based upon least restrictive licensing or further protections for their own intellectual property.

Standard Identifier: 9-12.AP.20

Grade Range: 9–12
Concept: Algorithms & Programming
Subconcept: Program Development
Practice(s): Testing and Refining Computational Artifacts (6.3)

Standard:
Iteratively evaluate and refine a computational artifact to enhance its performance, reliability, usability, and accessibility.

Descriptive Statement:
Evaluation and refinement of computational artifacts involves measuring, testing, debugging, and responding to the changing needs and expectations of users. Aspects that can be evaluated include correctness, performance, reliability, usability, and accessibility. For example, after witnessing common errors with user input in a computational artifact, students could refine the artifact to validate user input and provide an error message if invalid data is provided. Alternatively, students could observe a robot in a variety of lighting conditions to determine whether the code controlling a light sensor should be modified to make it less sensitive. Additionally, students could also incorporate feedback from a variety of end users to help guide the size and placement of menus and buttons in a user interface.

Standard Identifier: 9-12.AP.22

Grade Range: 9–12
Concept: Algorithms & Programming
Subconcept: Program Development
Practice(s): Communicating About Computing (7.2)

Standard:
Document decisions made during the design process using text, graphics, presentations, and/or demonstrations in the development of complex programs.

Descriptive Statement:
Complex programs are often iteratively designed as systems of interacting modules, each with a specific role, coordinating for a common overall purpose. Comments are included in code both to document the purpose of modules as well as the implementation details within a module. Together these support documentation of the design process. Students use resources such as libraries and tools to edit and manage parts of the program and corresponding documentation. For example, during development of a computational artifact students could comment their code (with date, modification, and rationale), sketch a flowchart to summarize control flow in a code journal, and share ideas and updates on a white board. Students may document their logic by explaining the development process and presenting to the class. The presentation could include photos of their white board, a video or screencast explaining the development process, or recorded audio description.

Standard Identifier: 9-12.CS.3

Grade Range: 9–12
Concept: Computing Systems
Subconcept: Troubleshooting
Practice(s): Testing and Refining Computational Artifacts (6.2)

Standard:
Develop guidelines that convey systematic troubleshooting strategies that others can use to identify and fix errors.

Descriptive Statement:
Troubleshooting complex problems involves the use of multiple sources when researching, evaluating, and implementing potential solutions. Troubleshooting also relies on experience, such as when people recognize that a problem is similar to one they have seen before and adapt solutions that have worked in the past. For example, students could create a list of troubleshooting strategies to debug network connectivity problems such as checking hardware and software status and settings, rebooting devices, and checking security settings. Alternatively, students could create troubleshooting guidelines for help desk employees based on commonly observed problems (e.g., problems connecting a new device to the computer, problems printing from a computer to a network printer).

Showing 21 - 30 of 52 Standards


Questions: Curriculum Frameworks and Instructional Resources Division | CFIRD@cde.ca.gov | 916-319-0881