HS-PS3-2 (Science (CA NGSS))
Standard Identifier:
HS-PS3-2
Content Area:
Science (CA NGSS)
Grade Range:
9–12
Disciplinary Core Idea:
PS3.A: Definitions of Energy
Cross Cutting Concept:
CCC-5: Energy and Matter: Flows, Cycles, and Conservation
Science & Engineering Practice:
SEP-2: Developing and Using Models
Content Area:
Physical Science
Title: HS-PS3 Energy
Performance Expectation: Develop and use models to illustrate that energy at the macroscopic scale can be accounted for as a combination of energy associated with the motion of particles (objects) and energy associated with the relative position of particles (objects). [Clarification Statement: Examples of phenomena at the macroscopic scale could include the conversion of kinetic energy to thermal energy, the energy stored due to position of an object above the earth, and the energy stored between two electrically-charged plates. Examples of models could include diagrams, drawings, descriptions, and computer simulations.]
Disciplinary Core Idea(s):
PS3.A: Definitions of Energy Energy is a quantitative property of a system that depends on the motion and interactions of matter and radiation within that system. That there is a single quantity called energy is due to the fact that a system’s total energy is conserved, even as, within the system, energy is continually transferred from one object to another and between its various possible forms. At the macroscopic scale, energy manifests itself in multiple ways, such as in motion, sound, light, and thermal energy. These relationships are better understood at the microscopic scale, at which all of the different manifestations of energy can be modeled as a combination of energy associated with the motion of particles and energy associated with the configuration (relative position of the particles). In some cases the relative position energy can be thought of as stored in fields (which mediate interactions between particles).
Science & Engineering Practices: Developing and Using Models Develop and use a model based on evidence to illustrate the relationships between systems or between components of a system.
Crosscutting Concepts: Energy and Matter Energy cannot be created or destroyed—only moves between one place and another place, between objects and/or fields, or between systems.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy SL.11-12.5: Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance understanding of findings, reasoning, and evidence and to add interest. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics.
DCI Connections:
Connections to other DCIs in this grade-band: HS.PS1.A; HS.PS1.B; HS.PS2.B; HS.ESS2.A Articulation across grade-bands: MS.PS1.A; MS.PS2.B; MS.PS3.A; MS.PS3.C
Performance Expectation: Develop and use models to illustrate that energy at the macroscopic scale can be accounted for as a combination of energy associated with the motion of particles (objects) and energy associated with the relative position of particles (objects). [Clarification Statement: Examples of phenomena at the macroscopic scale could include the conversion of kinetic energy to thermal energy, the energy stored due to position of an object above the earth, and the energy stored between two electrically-charged plates. Examples of models could include diagrams, drawings, descriptions, and computer simulations.]
Disciplinary Core Idea(s):
PS3.A: Definitions of Energy Energy is a quantitative property of a system that depends on the motion and interactions of matter and radiation within that system. That there is a single quantity called energy is due to the fact that a system’s total energy is conserved, even as, within the system, energy is continually transferred from one object to another and between its various possible forms. At the macroscopic scale, energy manifests itself in multiple ways, such as in motion, sound, light, and thermal energy. These relationships are better understood at the microscopic scale, at which all of the different manifestations of energy can be modeled as a combination of energy associated with the motion of particles and energy associated with the configuration (relative position of the particles). In some cases the relative position energy can be thought of as stored in fields (which mediate interactions between particles).
Science & Engineering Practices: Developing and Using Models Develop and use a model based on evidence to illustrate the relationships between systems or between components of a system.
Crosscutting Concepts: Energy and Matter Energy cannot be created or destroyed—only moves between one place and another place, between objects and/or fields, or between systems.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy SL.11-12.5: Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance understanding of findings, reasoning, and evidence and to add interest. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics.
DCI Connections:
Connections to other DCIs in this grade-band: HS.PS1.A; HS.PS1.B; HS.PS2.B; HS.ESS2.A Articulation across grade-bands: MS.PS1.A; MS.PS2.B; MS.PS3.A; MS.PS3.C
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881