Mathematics Standards
Remove this criterion from the search
Add a Domain
Remove this criterion from the search
Expressing Geometric Properties with Equations
Remove this criterion from the search
Interpreting Categorical and Quantitative Data
Remove this criterion from the search
Interpreting Functions
Remove this criterion from the search
Quantities
Remove this criterion from the search
Reasoning with Equations and Inequalities
Results
Showing 71 - 80 of 126 Standards
Standard Identifier: A-REI.4.b
Grade Range:
8–12
Domain:
Reasoning with Equations and Inequalities
Discipline:
Math II
Conceptual Category:
Algebra
Cluster:
Solve equations and inequalities in one variable. [Quadratics with real coefficients]
Standard:
Solve quadratic equations in one variable. Solve quadratic equations by inspection (e.g., for x^2 = 49), taking square roots, completing the square, the quadratic formula, and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as a ± bi for real numbers a and b.
Solve equations and inequalities in one variable. [Quadratics with real coefficients]
Standard:
Solve quadratic equations in one variable. Solve quadratic equations by inspection (e.g., for x^2 = 49), taking square roots, completing the square, the quadratic formula, and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as a ± bi for real numbers a and b.
Standard Identifier: A-REI.7
Grade Range:
8–12
Domain:
Reasoning with Equations and Inequalities
Discipline:
Math II
Conceptual Category:
Algebra
Cluster:
Solve systems of equations. [Linear-quadratic systems]
Standard:
Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically. For example, find the points of intersection between the line y = –3x and the circle x^2 + y^2 = 3.
Solve systems of equations. [Linear-quadratic systems]
Standard:
Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically. For example, find the points of intersection between the line y = –3x and the circle x^2 + y^2 = 3.
Standard Identifier: F-IF.4
Grade Range:
8–12
Domain:
Interpreting Functions
Discipline:
Math II
Conceptual Category:
Functions
Cluster:
Interpret functions that arise in applications in terms of the context. [Quadratic]
Standard:
For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. *
Interpret functions that arise in applications in terms of the context. [Quadratic]
Standard:
For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. *
Standard Identifier: F-IF.5
Grade Range:
8–12
Domain:
Interpreting Functions
Discipline:
Math II
Conceptual Category:
Functions
Cluster:
Interpret functions that arise in applications in terms of the context. [Quadratic]
Standard:
Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. *
Interpret functions that arise in applications in terms of the context. [Quadratic]
Standard:
Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. *
Standard Identifier: F-IF.6
Grade Range:
8–12
Domain:
Interpreting Functions
Discipline:
Math II
Conceptual Category:
Functions
Cluster:
Interpret functions that arise in applications in terms of the context. [Quadratic]
Standard:
Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. *
Interpret functions that arise in applications in terms of the context. [Quadratic]
Standard:
Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. *
Standard Identifier: F-IF.7.a
Grade Range:
8–12
Domain:
Interpreting Functions
Discipline:
Math II
Conceptual Category:
Functions
Cluster:
Analyze functions using different representations. [Linear, exponential, quadratic, absolute value, step, piecewise-defined]
Standard:
Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. * Graph linear and quadratic functions and show intercepts, maxima, and minima. *
Analyze functions using different representations. [Linear, exponential, quadratic, absolute value, step, piecewise-defined]
Standard:
Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. * Graph linear and quadratic functions and show intercepts, maxima, and minima. *
Standard Identifier: F-IF.7.b
Grade Range:
8–12
Domain:
Interpreting Functions
Discipline:
Math II
Conceptual Category:
Functions
Cluster:
Analyze functions using different representations. [Linear, exponential, quadratic, absolute value, step, piecewise-defined]
Standard:
Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. * Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions. *
Analyze functions using different representations. [Linear, exponential, quadratic, absolute value, step, piecewise-defined]
Standard:
Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. * Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions. *
Standard Identifier: F-IF.8.a
Grade Range:
8–12
Domain:
Interpreting Functions
Discipline:
Math II
Conceptual Category:
Functions
Cluster:
Analyze functions using different representations. [Linear, exponential, quadratic, absolute value, step, piecewise-defined]
Standard:
Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function. Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.
Analyze functions using different representations. [Linear, exponential, quadratic, absolute value, step, piecewise-defined]
Standard:
Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function. Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.
Standard Identifier: F-IF.8.b
Grade Range:
8–12
Domain:
Interpreting Functions
Discipline:
Math II
Conceptual Category:
Functions
Cluster:
Analyze functions using different representations. [Linear, exponential, quadratic, absolute value, step, piecewise-defined]
Standard:
Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function. Use the properties of exponents to interpret expressions for exponential functions. For example, identify percent rate of change in functions such as y = (1.02)^t, y = (0.97)^t, y = (1.01)^12t, and y = (1.2)^t/10, and classify them as representing exponential growth or decay.
Analyze functions using different representations. [Linear, exponential, quadratic, absolute value, step, piecewise-defined]
Standard:
Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function. Use the properties of exponents to interpret expressions for exponential functions. For example, identify percent rate of change in functions such as y = (1.02)^t, y = (0.97)^t, y = (1.01)^12t, and y = (1.2)^t/10, and classify them as representing exponential growth or decay.
Standard Identifier: F-IF.9
Grade Range:
8–12
Domain:
Interpreting Functions
Discipline:
Math II
Conceptual Category:
Functions
Cluster:
Analyze functions using different representations. [Linear, exponential, quadratic, absolute value, step, piecewise-defined]
Standard:
Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.
Analyze functions using different representations. [Linear, exponential, quadratic, absolute value, step, piecewise-defined]
Standard:
Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.
Showing 71 - 80 of 126 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881