Mathematics Standards
Remove this criterion from the search
Add a Domain
Remove this criterion from the search
Circles
Remove this criterion from the search
Expressing Geometric Properties with Equations
Remove this criterion from the search
Interpreting Functions
Remove this criterion from the search
Linear, Quadratic, and Exponential Models
Results
Showing 31 - 40 of 93 Standards
Standard Identifier: F-LE.3
Grade Range:
7–12
Domain:
Linear, Quadratic, and Exponential Models
Discipline:
Algebra I
Conceptual Category:
Functions
Cluster:
Construct and compare linear, quadratic, and exponential models and solve problems.
Standard:
Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function. *
Construct and compare linear, quadratic, and exponential models and solve problems.
Standard:
Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function. *
Standard Identifier: F-LE.5
Grade Range:
7–12
Domain:
Linear, Quadratic, and Exponential Models
Discipline:
Algebra I
Conceptual Category:
Functions
Cluster:
Interpret expressions for functions in terms of the situation they model.
Standard:
Interpret the parameters in a linear or exponential function in terms of a context. * [Linear and exponential of form f(x) = b^x + k]
Interpret expressions for functions in terms of the situation they model.
Standard:
Interpret the parameters in a linear or exponential function in terms of a context. * [Linear and exponential of form f(x) = b^x + k]
Standard Identifier: F-LE.5
Grade Range:
7–12
Domain:
Linear, Quadratic, and Exponential Models
Discipline:
Math I
Conceptual Category:
Functions
Cluster:
Interpret expressions for functions in terms of the situation they model. [Linear and exponential of form f(x) = b^x + k]
Standard:
Interpret the parameters in a linear or exponential function in terms of a context. *
Interpret expressions for functions in terms of the situation they model. [Linear and exponential of form f(x) = b^x + k]
Standard:
Interpret the parameters in a linear or exponential function in terms of a context. *
Standard Identifier: F-LE.6
Grade Range:
7–12
Domain:
Linear, Quadratic, and Exponential Models
Discipline:
Algebra I
Conceptual Category:
Functions
Cluster:
Interpret expressions for functions in terms of the situation they model.
Standard:
Apply quadratic functions to physical problems, such as the motion of an object under the force of gravity. CA *
Interpret expressions for functions in terms of the situation they model.
Standard:
Apply quadratic functions to physical problems, such as the motion of an object under the force of gravity. CA *
Standard Identifier: G-GPE.4
Grade Range:
7–12
Domain:
Expressing Geometric Properties with Equations
Discipline:
Math I
Conceptual Category:
Geometry
Cluster:
Use coordinates to prove simple geometric theorems algebraically. [Include distance formula; relate to Pythagorean Theorem.]
Standard:
Use coordinates to prove simple geometric theorems algebraically. For example, prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle; prove or disprove that the point (1, √3) lies on the circle centered at the origin and containing the point (0, 2).
Use coordinates to prove simple geometric theorems algebraically. [Include distance formula; relate to Pythagorean Theorem.]
Standard:
Use coordinates to prove simple geometric theorems algebraically. For example, prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle; prove or disprove that the point (1, √3) lies on the circle centered at the origin and containing the point (0, 2).
Standard Identifier: G-GPE.5
Grade Range:
7–12
Domain:
Expressing Geometric Properties with Equations
Discipline:
Math I
Conceptual Category:
Geometry
Cluster:
Use coordinates to prove simple geometric theorems algebraically. [Include distance formula; relate to Pythagorean Theorem.]
Standard:
Prove the slope criteria for parallel and perpendicular lines and use them to solve geometric problems (e.g., find the equation of a line parallel or perpendicular to a given line that passes through a given point).
Use coordinates to prove simple geometric theorems algebraically. [Include distance formula; relate to Pythagorean Theorem.]
Standard:
Prove the slope criteria for parallel and perpendicular lines and use them to solve geometric problems (e.g., find the equation of a line parallel or perpendicular to a given line that passes through a given point).
Standard Identifier: G-GPE.7
Grade Range:
7–12
Domain:
Expressing Geometric Properties with Equations
Discipline:
Math I
Conceptual Category:
Geometry
Cluster:
Use coordinates to prove simple geometric theorems algebraically. [Include distance formula; relate to Pythagorean Theorem.]
Standard:
Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula. *
Use coordinates to prove simple geometric theorems algebraically. [Include distance formula; relate to Pythagorean Theorem.]
Standard:
Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula. *
Standard Identifier: F-IF.4
Grade Range:
8–12
Domain:
Interpreting Functions
Discipline:
Math II
Conceptual Category:
Functions
Cluster:
Interpret functions that arise in applications in terms of the context. [Quadratic]
Standard:
For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. *
Interpret functions that arise in applications in terms of the context. [Quadratic]
Standard:
For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. *
Standard Identifier: F-IF.5
Grade Range:
8–12
Domain:
Interpreting Functions
Discipline:
Math II
Conceptual Category:
Functions
Cluster:
Interpret functions that arise in applications in terms of the context. [Quadratic]
Standard:
Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. *
Interpret functions that arise in applications in terms of the context. [Quadratic]
Standard:
Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. *
Standard Identifier: F-IF.6
Grade Range:
8–12
Domain:
Interpreting Functions
Discipline:
Math II
Conceptual Category:
Functions
Cluster:
Interpret functions that arise in applications in terms of the context. [Quadratic]
Standard:
Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. *
Interpret functions that arise in applications in terms of the context. [Quadratic]
Standard:
Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. *
Showing 31 - 40 of 93 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881