Mathematics Standards
Remove this criterion from the search
Add a Domain
Remove this criterion from the search
Circles
Remove this criterion from the search
Expressing Geometric Properties with Equations
Remove this criterion from the search
Modeling with Geometry
Remove this criterion from the search
Reasoning with Equations and Inequalities
Results
Showing 41 - 50 of 58 Standards
Standard Identifier: G-GPE.4
Grade Range:
8–12
Domain:
Expressing Geometric Properties with Equations
Discipline:
Math II
Conceptual Category:
Geometry
Cluster:
Use coordinates to prove simple geometric theorems algebraically.
Standard:
Use coordinates to prove simple geometric theorems algebraically. For example, prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle; prove or disprove that the point (1, √3) lies on the circle centered at the origin and containing the point (0, 2). [Include simple circle theorems.]
Use coordinates to prove simple geometric theorems algebraically.
Standard:
Use coordinates to prove simple geometric theorems algebraically. For example, prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle; prove or disprove that the point (1, √3) lies on the circle centered at the origin and containing the point (0, 2). [Include simple circle theorems.]
Standard Identifier: G-GPE.5
Grade Range:
8–12
Domain:
Expressing Geometric Properties with Equations
Discipline:
Geometry
Conceptual Category:
Geometry
Cluster:
Use coordinates to prove simple geometric theorems algebraically. [Include distance formula; relate to Pythagorean Theorem.]
Standard:
Prove the slope criteria for parallel and perpendicular lines and use them to solve geometric problems (e.g., find the equation of a line parallel or perpendicular to a given line that passes through a given point).
Use coordinates to prove simple geometric theorems algebraically. [Include distance formula; relate to Pythagorean Theorem.]
Standard:
Prove the slope criteria for parallel and perpendicular lines and use them to solve geometric problems (e.g., find the equation of a line parallel or perpendicular to a given line that passes through a given point).
Standard Identifier: G-GPE.6
Grade Range:
8–12
Domain:
Expressing Geometric Properties with Equations
Discipline:
Geometry
Conceptual Category:
Geometry
Cluster:
Use coordinates to prove simple geometric theorems algebraically. [Include distance formula; relate to Pythagorean Theorem.]
Standard:
Find the point on a directed line segment between two given points that partitions the segment in a given ratio.
Use coordinates to prove simple geometric theorems algebraically. [Include distance formula; relate to Pythagorean Theorem.]
Standard:
Find the point on a directed line segment between two given points that partitions the segment in a given ratio.
Standard Identifier: G-GPE.6
Grade Range:
8–12
Domain:
Expressing Geometric Properties with Equations
Discipline:
Math II
Conceptual Category:
Geometry
Cluster:
Use coordinates to prove simple geometric theorems algebraically.
Standard:
Find the point on a directed line segment between two given points that partitions the segment in a given ratio.
Use coordinates to prove simple geometric theorems algebraically.
Standard:
Find the point on a directed line segment between two given points that partitions the segment in a given ratio.
Standard Identifier: G-GPE.7
Grade Range:
8–12
Domain:
Expressing Geometric Properties with Equations
Discipline:
Geometry
Conceptual Category:
Geometry
Cluster:
Use coordinates to prove simple geometric theorems algebraically. [Include distance formula; relate to Pythagorean Theorem.]
Standard:
Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula. *
Use coordinates to prove simple geometric theorems algebraically. [Include distance formula; relate to Pythagorean Theorem.]
Standard:
Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula. *
Standard Identifier: G-MG.1
Grade Range:
8–12
Domain:
Modeling with Geometry
Discipline:
Geometry
Conceptual Category:
Geometry
Cluster:
Apply geometric concepts in modeling situations.
Standard:
Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder). *
Apply geometric concepts in modeling situations.
Standard:
Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder). *
Standard Identifier: G-MG.2
Grade Range:
8–12
Domain:
Modeling with Geometry
Discipline:
Geometry
Conceptual Category:
Geometry
Cluster:
Apply geometric concepts in modeling situations.
Standard:
Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot). *
Apply geometric concepts in modeling situations.
Standard:
Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot). *
Standard Identifier: G-MG.3
Grade Range:
8–12
Domain:
Modeling with Geometry
Discipline:
Geometry
Conceptual Category:
Geometry
Cluster:
Apply geometric concepts in modeling situations.
Standard:
Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios). *
Apply geometric concepts in modeling situations.
Standard:
Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios). *
Standard Identifier: A-REI.11
Grade Range:
9–12
Domain:
Reasoning with Equations and Inequalities
Discipline:
Math III
Conceptual Category:
Algebra
Cluster:
Represent and solve equations and inequalities graphically. [Combine polynomial, rational, radical, absolute value, and exponential functions.]
Standard:
Explain why the x-coordinates of the points where the graphs of the equations y = f(x) and y = g(x) intersect are the solutions of the equation f(x) = g(x); find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where f(x) and/or g(x) are linear, polynomial, rational, absolute value, exponential, and logarithmic functions. *
Represent and solve equations and inequalities graphically. [Combine polynomial, rational, radical, absolute value, and exponential functions.]
Standard:
Explain why the x-coordinates of the points where the graphs of the equations y = f(x) and y = g(x) intersect are the solutions of the equation f(x) = g(x); find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where f(x) and/or g(x) are linear, polynomial, rational, absolute value, exponential, and logarithmic functions. *
Standard Identifier: A-REI.11
Grade Range:
9–12
Domain:
Reasoning with Equations and Inequalities
Discipline:
Algebra II
Conceptual Category:
Algebra
Cluster:
Represent and solve equations and inequalities graphically. [Combine polynomial, rational, radical, absolute value, and exponential functions.]
Standard:
Explain why the x-coordinates of the points where the graphs of the equations y = f(x) and y = g(x) intersect are the solutions of the equation f(x) = g(x); find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where f(x) and/or g(x) are linear, polynomial, rational, absolute value, exponential, and logarithmic functions. *
Represent and solve equations and inequalities graphically. [Combine polynomial, rational, radical, absolute value, and exponential functions.]
Standard:
Explain why the x-coordinates of the points where the graphs of the equations y = f(x) and y = g(x) intersect are the solutions of the equation f(x) = g(x); find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where f(x) and/or g(x) are linear, polynomial, rational, absolute value, exponential, and logarithmic functions. *
Showing 41 - 50 of 58 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881