Mathematics Standards
Results
Showing 1 - 10 of 12 Standards
Standard Identifier: G-CO.10
Grade Range:
8–12
Domain:
Congruence
Discipline:
Math II
Conceptual Category:
Geometry
Cluster:
Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point.
Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point.
Standard Identifier: G-CO.11
Grade Range:
8–12
Domain:
Congruence
Discipline:
Math II
Conceptual Category:
Geometry
Cluster:
Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about parallelograms. Theorems include: opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals.
Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about parallelograms. Theorems include: opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals.
Standard Identifier: G-CO.9
Grade Range:
8–12
Domain:
Congruence
Discipline:
Math II
Conceptual Category:
Geometry
Cluster:
Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment’s endpoints.
Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment’s endpoints.
Standard Identifier: G-GMD.1
Grade Range:
8–12
Domain:
Geometric Measurement and Dimension
Discipline:
Math II
Conceptual Category:
Geometry
Cluster:
Explain volume formulas and use them to solve problems.
Standard:
Give an informal argument for the formulas for the circumference of a circle, area of a circle, volume of a cylinder, pyramid, and cone. Use dissection arguments, Cavalieri’s principle, and informal limit arguments.
Explain volume formulas and use them to solve problems.
Standard:
Give an informal argument for the formulas for the circumference of a circle, area of a circle, volume of a cylinder, pyramid, and cone. Use dissection arguments, Cavalieri’s principle, and informal limit arguments.
Standard Identifier: G-GMD.3
Grade Range:
8–12
Domain:
Geometric Measurement and Dimension
Discipline:
Math II
Conceptual Category:
Geometry
Cluster:
Explain volume formulas and use them to solve problems.
Standard:
Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems. *
Explain volume formulas and use them to solve problems.
Standard:
Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems. *
Standard Identifier: G-GMD.5
Grade Range:
8–12
Domain:
Geometric Measurement and Dimension
Discipline:
Math II
Conceptual Category:
Geometry
Cluster:
Visualize relationships between two-dimensional and three-dimensional objects.
Standard:
Know that the effect of a scale factor k greater than zero on length, area, and volume is to multiply each by k, k^2, and k^3, respectively; determine length, area and volume measures using scale factors. CA
Visualize relationships between two-dimensional and three-dimensional objects.
Standard:
Know that the effect of a scale factor k greater than zero on length, area, and volume is to multiply each by k, k^2, and k^3, respectively; determine length, area and volume measures using scale factors. CA
Standard Identifier: G-GMD.6
Grade Range:
8–12
Domain:
Geometric Measurement and Dimension
Discipline:
Math II
Conceptual Category:
Geometry
Cluster:
Visualize relationships between two-dimensional and three-dimensional objects.
Standard:
Verify experimentally that in a triangle, angles opposite longer sides are larger, sides opposite larger angles are longer, and the sum of any two side lengths is greater than the remaining side length; apply these relationships to solve realworld and mathematical problems. CA
Visualize relationships between two-dimensional and three-dimensional objects.
Standard:
Verify experimentally that in a triangle, angles opposite longer sides are larger, sides opposite larger angles are longer, and the sum of any two side lengths is greater than the remaining side length; apply these relationships to solve realworld and mathematical problems. CA
Standard Identifier: N-CN.1
Grade Range:
8–12
Domain:
The Complex Number System
Discipline:
Math II
Conceptual Category:
Number and Quantity
Cluster:
Perform arithmetic operations with complex numbers. [i^2 as highest power of i]
Standard:
Know there is a complex number i such that i^2 = −1, and every complex number has the form a + bi with a and b real.
Perform arithmetic operations with complex numbers. [i^2 as highest power of i]
Standard:
Know there is a complex number i such that i^2 = −1, and every complex number has the form a + bi with a and b real.
Standard Identifier: N-CN.2
Grade Range:
8–12
Domain:
The Complex Number System
Discipline:
Math II
Conceptual Category:
Number and Quantity
Cluster:
Perform arithmetic operations with complex numbers. [i^2 as highest power of i]
Standard:
Use the relation i^2 = −1 and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers.
Perform arithmetic operations with complex numbers. [i^2 as highest power of i]
Standard:
Use the relation i^2 = −1 and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers.
Standard Identifier: N-CN.7
Grade Range:
8–12
Domain:
The Complex Number System
Discipline:
Math II
Conceptual Category:
Number and Quantity
Cluster:
Use complex numbers in polynomial identities and equations. [Quadratics with real coefficients]
Standard:
Solve quadratic equations with real coefficients that have complex solutions.
Use complex numbers in polynomial identities and equations. [Quadratics with real coefficients]
Standard:
Solve quadratic equations with real coefficients that have complex solutions.
Showing 1 - 10 of 12 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881