Mathematics Standards
Remove this criterion from the search
Add a Domain
Remove this criterion from the search
Building Functions
Remove this criterion from the search
Expressing Geometric Properties with Equations
Remove this criterion from the search
Expressions and Equations
Remove this criterion from the search
Measurement and Data
Remove this criterion from the search
The Number System
Remove this criterion from the search
The Real Number System
Remove this criterion from the search
Trigonometric Functions
Results
Showing 91 - 100 of 146 Standards
Standard Identifier: F-BF.3
Grade Range:
7–12
Domain:
Building Functions
Discipline:
Algebra I
Conceptual Category:
Functions
Cluster:
Build new functions from existing functions. [Linear, exponential, quadratic, and absolute value; for F.BF.4a, linear only]
Standard:
Identify the effect on the graph of replacing f(x) by f(x) + k, kf(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.
Build new functions from existing functions. [Linear, exponential, quadratic, and absolute value; for F.BF.4a, linear only]
Standard:
Identify the effect on the graph of replacing f(x) by f(x) + k, kf(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.
Standard Identifier: F-BF.4.a
Grade Range:
7–12
Domain:
Building Functions
Discipline:
Algebra I
Conceptual Category:
Functions
Cluster:
Build new functions from existing functions. [Linear, exponential, quadratic, and absolute value; for F.BF.4a, linear only]
Standard:
Find inverse functions. Solve an equation of the form f(x) = c for a simple function f that has an inverse and write an expression for the inverse.
Build new functions from existing functions. [Linear, exponential, quadratic, and absolute value; for F.BF.4a, linear only]
Standard:
Find inverse functions. Solve an equation of the form f(x) = c for a simple function f that has an inverse and write an expression for the inverse.
Standard Identifier: G-GPE.4
Grade Range:
7–12
Domain:
Expressing Geometric Properties with Equations
Discipline:
Math I
Conceptual Category:
Geometry
Cluster:
Use coordinates to prove simple geometric theorems algebraically. [Include distance formula; relate to Pythagorean Theorem.]
Standard:
Use coordinates to prove simple geometric theorems algebraically. For example, prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle; prove or disprove that the point (1, √3) lies on the circle centered at the origin and containing the point (0, 2).
Use coordinates to prove simple geometric theorems algebraically. [Include distance formula; relate to Pythagorean Theorem.]
Standard:
Use coordinates to prove simple geometric theorems algebraically. For example, prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle; prove or disprove that the point (1, √3) lies on the circle centered at the origin and containing the point (0, 2).
Standard Identifier: G-GPE.5
Grade Range:
7–12
Domain:
Expressing Geometric Properties with Equations
Discipline:
Math I
Conceptual Category:
Geometry
Cluster:
Use coordinates to prove simple geometric theorems algebraically. [Include distance formula; relate to Pythagorean Theorem.]
Standard:
Prove the slope criteria for parallel and perpendicular lines and use them to solve geometric problems (e.g., find the equation of a line parallel or perpendicular to a given line that passes through a given point).
Use coordinates to prove simple geometric theorems algebraically. [Include distance formula; relate to Pythagorean Theorem.]
Standard:
Prove the slope criteria for parallel and perpendicular lines and use them to solve geometric problems (e.g., find the equation of a line parallel or perpendicular to a given line that passes through a given point).
Standard Identifier: G-GPE.7
Grade Range:
7–12
Domain:
Expressing Geometric Properties with Equations
Discipline:
Math I
Conceptual Category:
Geometry
Cluster:
Use coordinates to prove simple geometric theorems algebraically. [Include distance formula; relate to Pythagorean Theorem.]
Standard:
Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula. *
Use coordinates to prove simple geometric theorems algebraically. [Include distance formula; relate to Pythagorean Theorem.]
Standard:
Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula. *
Standard Identifier: N-RN.1
Grade Range:
7–12
Domain:
The Real Number System
Discipline:
Algebra I
Conceptual Category:
Number and Quantity
Cluster:
Extend the properties of exponents to rational exponents.
Standard:
Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define 5^1/3 to be the cube root of 5 because we want (5^1/3)^3 = 5(^1/3)^3 to hold, so (5^1/3)^3 must equal 5.
Extend the properties of exponents to rational exponents.
Standard:
Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define 5^1/3 to be the cube root of 5 because we want (5^1/3)^3 = 5(^1/3)^3 to hold, so (5^1/3)^3 must equal 5.
Standard Identifier: N-RN.2
Grade Range:
7–12
Domain:
The Real Number System
Discipline:
Algebra I
Conceptual Category:
Number and Quantity
Cluster:
Extend the properties of exponents to rational exponents.
Standard:
Rewrite expressions involving radicals and rational exponents using the properties of exponents.
Extend the properties of exponents to rational exponents.
Standard:
Rewrite expressions involving radicals and rational exponents using the properties of exponents.
Standard Identifier: N-RN.3
Grade Range:
7–12
Domain:
The Real Number System
Discipline:
Algebra I
Conceptual Category:
Number and Quantity
Cluster:
Use properties of rational and irrational numbers.
Standard:
Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.
Use properties of rational and irrational numbers.
Standard:
Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.
Standard Identifier: 8.EE.1
Grade:
8
Domain:
Expressions and Equations
Cluster:
Work with radicals and integer exponents.
Standard:
Know and apply the properties of integer exponents to generate equivalent numerical expressions. For example, 3^2 × 3^-5 = 3^-3 = 1/3^3 = 1/27.
Work with radicals and integer exponents.
Standard:
Know and apply the properties of integer exponents to generate equivalent numerical expressions. For example, 3^2 × 3^-5 = 3^-3 = 1/3^3 = 1/27.
Standard Identifier: 8.EE.2
Grade:
8
Domain:
Expressions and Equations
Cluster:
Work with radicals and integer exponents.
Standard:
Use square root and cube root symbols to represent solutions to equations of the form x^2 = p and x^3 = p, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that √2 is irrational.
Work with radicals and integer exponents.
Standard:
Use square root and cube root symbols to represent solutions to equations of the form x^2 = p and x^3 = p, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that √2 is irrational.
Showing 91 - 100 of 146 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881