Mathematics Standards
Remove this criterion from the search
Arithmetic with Polynomials and Rational Expressions
Remove this criterion from the search
Geometry
Remove this criterion from the search
Interpreting Categorical and Quantitative Data
Remove this criterion from the search
Interpreting Functions
Remove this criterion from the search
Measurement and Data
Remove this criterion from the search
Number and Operations in Base Ten
Results
Showing 111 - 120 of 218 Standards
Standard Identifier: 7.G.4
Grade:
7
Domain:
Geometry
Cluster:
Solve real-life and mathematical problems involving angle measure, area, surface area, and volume.
Standard:
Know the formulas for the area and circumference of a circle and use them to solve problems; give an informal derivation of the relationship between the circumference and area of a circle.
Solve real-life and mathematical problems involving angle measure, area, surface area, and volume.
Standard:
Know the formulas for the area and circumference of a circle and use them to solve problems; give an informal derivation of the relationship between the circumference and area of a circle.
Standard Identifier: 7.G.5
Grade:
7
Domain:
Geometry
Cluster:
Solve real-life and mathematical problems involving angle measure, area, surface area, and volume.
Standard:
Use facts about supplementary, complementary, vertical, and adjacent angles in a multi-step problem to write and solve simple equations for an unknown angle in a figure.
Solve real-life and mathematical problems involving angle measure, area, surface area, and volume.
Standard:
Use facts about supplementary, complementary, vertical, and adjacent angles in a multi-step problem to write and solve simple equations for an unknown angle in a figure.
Standard Identifier: 7.G.6
Grade:
7
Domain:
Geometry
Cluster:
Solve real-life and mathematical problems involving angle measure, area, surface area, and volume.
Standard:
Solve real-world and mathematical problems involving area, volume and surface area of two- and three-dimensional objects composed of triangles, quadrilaterals, polygons, cubes, and right prisms.
Solve real-life and mathematical problems involving angle measure, area, surface area, and volume.
Standard:
Solve real-world and mathematical problems involving area, volume and surface area of two- and three-dimensional objects composed of triangles, quadrilaterals, polygons, cubes, and right prisms.
Standard Identifier: A-APR.1
Grade Range:
7–12
Domain:
Arithmetic with Polynomials and Rational Expressions
Discipline:
Algebra I
Conceptual Category:
Algebra
Cluster:
Perform arithmetic operations on polynomials. [Linear and quadratic]
Standard:
Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.
Perform arithmetic operations on polynomials. [Linear and quadratic]
Standard:
Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.
Standard Identifier: F-IF.1
Grade Range:
7–12
Domain:
Interpreting Functions
Discipline:
Algebra I
Conceptual Category:
Functions
Cluster:
Understand the concept of a function and use function notation. [Learn as general principle; focus on linear and exponential and on arithmetic and geometric sequences.]
Standard:
Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then f(x) denotes the output of f corresponding to the input x. The graph of f is the graph of the equation y = f(x).
Understand the concept of a function and use function notation. [Learn as general principle; focus on linear and exponential and on arithmetic and geometric sequences.]
Standard:
Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then f(x) denotes the output of f corresponding to the input x. The graph of f is the graph of the equation y = f(x).
Standard Identifier: F-IF.1
Grade Range:
7–12
Domain:
Interpreting Functions
Discipline:
Math I
Conceptual Category:
Functions
Cluster:
Understand the concept of a function and use function notation. [Learn as general principle. Focus on linear and exponential (integer domains) and on arithmetic and geometric sequences.]
Standard:
Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then f(x) denotes the output of f corresponding to the input x. The graph of f is the graph of the equation y = f(x).
Understand the concept of a function and use function notation. [Learn as general principle. Focus on linear and exponential (integer domains) and on arithmetic and geometric sequences.]
Standard:
Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then f(x) denotes the output of f corresponding to the input x. The graph of f is the graph of the equation y = f(x).
Standard Identifier: F-IF.2
Grade Range:
7–12
Domain:
Interpreting Functions
Discipline:
Math I
Conceptual Category:
Functions
Cluster:
Understand the concept of a function and use function notation. [Learn as general principle. Focus on linear and exponential (integer domains) and on arithmetic and geometric sequences.]
Standard:
Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.
Understand the concept of a function and use function notation. [Learn as general principle. Focus on linear and exponential (integer domains) and on arithmetic and geometric sequences.]
Standard:
Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.
Standard Identifier: F-IF.2
Grade Range:
7–12
Domain:
Interpreting Functions
Discipline:
Algebra I
Conceptual Category:
Functions
Cluster:
Understand the concept of a function and use function notation. [Learn as general principle; focus on linear and exponential and on arithmetic and geometric sequences.]
Standard:
Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.
Understand the concept of a function and use function notation. [Learn as general principle; focus on linear and exponential and on arithmetic and geometric sequences.]
Standard:
Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.
Standard Identifier: F-IF.3
Grade Range:
7–12
Domain:
Interpreting Functions
Discipline:
Algebra I
Conceptual Category:
Functions
Cluster:
Understand the concept of a function and use function notation. [Learn as general principle; focus on linear and exponential and on arithmetic and geometric sequences.]
Standard:
Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by f(0) = f(1) = 1, f(n + 1) = f(n) + f(n − 1) for n ≥ 1.
Understand the concept of a function and use function notation. [Learn as general principle; focus on linear and exponential and on arithmetic and geometric sequences.]
Standard:
Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by f(0) = f(1) = 1, f(n + 1) = f(n) + f(n − 1) for n ≥ 1.
Standard Identifier: F-IF.3
Grade Range:
7–12
Domain:
Interpreting Functions
Discipline:
Math I
Conceptual Category:
Functions
Cluster:
Understand the concept of a function and use function notation. [Learn as general principle. Focus on linear and exponential (integer domains) and on arithmetic and geometric sequences.]
Standard:
Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by f(0) = f(1) = 1, f(n + 1) = f(n) + f(n − 1) for n ≥ 1.
Understand the concept of a function and use function notation. [Learn as general principle. Focus on linear and exponential (integer domains) and on arithmetic and geometric sequences.]
Standard:
Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by f(0) = f(1) = 1, f(n + 1) = f(n) + f(n − 1) for n ≥ 1.
Showing 111 - 120 of 218 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881