Mathematics Standards
Remove this criterion from the search
Arithmetic with Polynomials and Rational Expressions
Remove this criterion from the search
Similarity, Right Triangles, and Trigonometry
Remove this criterion from the search
Statistics and Probability
Remove this criterion from the search
The Complex Number System
Results
Showing 61 - 70 of 77 Standards
Standard Identifier: A-APR.4
Grade Range:
9–12
Domain:
Arithmetic with Polynomials and Rational Expressions
Discipline:
Math III
Conceptual Category:
Algebra
Cluster:
Use polynomial identities to solve problems.
Standard:
Prove polynomial identities and use them to describe numerical relationships. For example, the polynomial identity (x^2 + y^2)^2= (x^2 – y^2)^2 + (2xy)^2 can be used to generate Pythagorean triples.
Use polynomial identities to solve problems.
Standard:
Prove polynomial identities and use them to describe numerical relationships. For example, the polynomial identity (x^2 + y^2)^2= (x^2 – y^2)^2 + (2xy)^2 can be used to generate Pythagorean triples.
Standard Identifier: A-APR.5
Grade Range:
9–12
Domain:
Arithmetic with Polynomials and Rational Expressions
Discipline:
Math III
Conceptual Category:
Algebra
Cluster:
Use polynomial identities to solve problems.
Standard:
(+) Know and apply the Binomial Theorem for the expansion of (x + y)^n in powers of x and y for a positive integer n, where x and y are any numbers, with coefficients determined for example by Pascal’s Triangle.
Footnote:
The Binomial Theorem can be proved by mathematical induction or by a combinatorial argument.
Use polynomial identities to solve problems.
Standard:
(+) Know and apply the Binomial Theorem for the expansion of (x + y)^n in powers of x and y for a positive integer n, where x and y are any numbers, with coefficients determined for example by Pascal’s Triangle.
Footnote:
The Binomial Theorem can be proved by mathematical induction or by a combinatorial argument.
Standard Identifier: A-APR.5
Grade Range:
9–12
Domain:
Arithmetic with Polynomials and Rational Expressions
Discipline:
Algebra II
Conceptual Category:
Algebra
Cluster:
Use polynomial identities to solve problems.
Standard:
(+) Know and apply the Binomial Theorem for the expansion of (x + y)^n in powers of x and y for a positive integer n, where x and y are any numbers, with coefficients determined for example by Pascal’s Triangle.
Footnote:
The Binomial Theorem can be proved by mathematical induction or by a combinatorial argument.
Use polynomial identities to solve problems.
Standard:
(+) Know and apply the Binomial Theorem for the expansion of (x + y)^n in powers of x and y for a positive integer n, where x and y are any numbers, with coefficients determined for example by Pascal’s Triangle.
Footnote:
The Binomial Theorem can be proved by mathematical induction or by a combinatorial argument.
Standard Identifier: A-APR.6
Grade Range:
9–12
Domain:
Arithmetic with Polynomials and Rational Expressions
Discipline:
Algebra II
Conceptual Category:
Algebra
Cluster:
Rewrite rational expressions. [Linear and quadratic denominators]
Standard:
Rewrite simple rational expressions in different forms; write a(x)/b(x) in the form q(x) + r(x)/b(x), where a(x), b(x), q(x), and r(x) are polynomials with the degree of r(x) less than the degree of b(x), using inspection, long division, or, for the more complicated examples, a computer algebra system.
Rewrite rational expressions. [Linear and quadratic denominators]
Standard:
Rewrite simple rational expressions in different forms; write a(x)/b(x) in the form q(x) + r(x)/b(x), where a(x), b(x), q(x), and r(x) are polynomials with the degree of r(x) less than the degree of b(x), using inspection, long division, or, for the more complicated examples, a computer algebra system.
Standard Identifier: A-APR.6
Grade Range:
9–12
Domain:
Arithmetic with Polynomials and Rational Expressions
Discipline:
Math III
Conceptual Category:
Algebra
Cluster:
Rewrite rational expressions. [Linear and quadratic denominators]
Standard:
Rewrite simple rational expressions in different forms; write a(x)/b(x) in the form q(x) + r(x)/b(x), where a(x), b(x), q(x), and r(x) are polynomials with the degree of r(x) less than the degree of b(x), using inspection, long division, or, for the more complicated examples, a computer algebra system.
Rewrite rational expressions. [Linear and quadratic denominators]
Standard:
Rewrite simple rational expressions in different forms; write a(x)/b(x) in the form q(x) + r(x)/b(x), where a(x), b(x), q(x), and r(x) are polynomials with the degree of r(x) less than the degree of b(x), using inspection, long division, or, for the more complicated examples, a computer algebra system.
Standard Identifier: A-APR.7
Grade Range:
9–12
Domain:
Arithmetic with Polynomials and Rational Expressions
Discipline:
Math III
Conceptual Category:
Algebra
Cluster:
Rewrite rational expressions. [Linear and quadratic denominators]
Standard:
(+) Understand that rational expressions form a system analogous to the rational numbers, closed under addition, subtraction multiplication, and division by a nonzero rational expression; add, subtract, multiply, and divide rational expressions.
Rewrite rational expressions. [Linear and quadratic denominators]
Standard:
(+) Understand that rational expressions form a system analogous to the rational numbers, closed under addition, subtraction multiplication, and division by a nonzero rational expression; add, subtract, multiply, and divide rational expressions.
Standard Identifier: A-APR.7
Grade Range:
9–12
Domain:
Arithmetic with Polynomials and Rational Expressions
Discipline:
Algebra II
Conceptual Category:
Algebra
Cluster:
Rewrite rational expressions. [Linear and quadratic denominators]
Standard:
(+) Understand that rational expressions form a system analogous to the rational numbers, closed under addition, subtraction multiplication, and division by a nonzero rational expression; add, subtract, multiply, and divide rational expressions.
Rewrite rational expressions. [Linear and quadratic denominators]
Standard:
(+) Understand that rational expressions form a system analogous to the rational numbers, closed under addition, subtraction multiplication, and division by a nonzero rational expression; add, subtract, multiply, and divide rational expressions.
Standard Identifier: G-SRT.10
Grade Range:
9–12
Domain:
Similarity, Right Triangles, and Trigonometry
Discipline:
Math III
Conceptual Category:
Geometry
Cluster:
Apply trigonometry to general triangles.
Standard:
(+) Prove the Laws of Sines and Cosines and use them to solve problems.
Apply trigonometry to general triangles.
Standard:
(+) Prove the Laws of Sines and Cosines and use them to solve problems.
Standard Identifier: G-SRT.11
Grade Range:
9–12
Domain:
Similarity, Right Triangles, and Trigonometry
Discipline:
Math III
Conceptual Category:
Geometry
Cluster:
Apply trigonometry to general triangles.
Standard:
(+) Understand and apply the Law of Sines and the Law of Cosines to find unknown measurements in right and non-right triangles (e.g., surveying problems, resultant forces).
Apply trigonometry to general triangles.
Standard:
(+) Understand and apply the Law of Sines and the Law of Cosines to find unknown measurements in right and non-right triangles (e.g., surveying problems, resultant forces).
Standard Identifier: G-SRT.9
Grade Range:
9–12
Domain:
Similarity, Right Triangles, and Trigonometry
Discipline:
Math III
Conceptual Category:
Geometry
Cluster:
Apply trigonometry to general triangles.
Standard:
(+) Derive the formula A = 1/2 ab sin(C) for the area of a triangle by drawing an auxiliary line from a vertex perpendicular to the opposite side.
Apply trigonometry to general triangles.
Standard:
(+) Derive the formula A = 1/2 ab sin(C) for the area of a triangle by drawing an auxiliary line from a vertex perpendicular to the opposite side.
Showing 61 - 70 of 77 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881