Mathematics Standards
Remove this criterion from the search
Arithmetic with Polynomials and Rational Expressions
Remove this criterion from the search
Measurement and Data
Remove this criterion from the search
Number and Operations in Base Ten
Remove this criterion from the search
Number and Operations—Fractions
Remove this criterion from the search
Trigonometric Functions
Results
Showing 111 - 120 of 138 Standards
Standard Identifier: 5.NF.7.b
Grade:
5
Domain:
Number and Operations—Fractions
Cluster:
Apply and extend previous understandings of multiplication and division to multiply and divide fractions.
Standard:
Apply and extend previous understandings of division to divide unit fractions by whole numbers and whole numbers by unit fractions. Interpret division of a whole number by a unit fraction, and compute such quotients. For example, create a story context for 4 ÷ (1/5), and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that 4 ÷ (1/5) = 20 because 20 × (1/5) = 4.
Apply and extend previous understandings of multiplication and division to multiply and divide fractions.
Standard:
Apply and extend previous understandings of division to divide unit fractions by whole numbers and whole numbers by unit fractions. Interpret division of a whole number by a unit fraction, and compute such quotients. For example, create a story context for 4 ÷ (1/5), and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that 4 ÷ (1/5) = 20 because 20 × (1/5) = 4.
Standard Identifier: 5.NF.7.c
Grade:
5
Domain:
Number and Operations—Fractions
Cluster:
Apply and extend previous understandings of multiplication and division to multiply and divide fractions.
Standard:
Apply and extend previous understandings of division to divide unit fractions by whole numbers and whole numbers by unit fractions. Solve real-world problems involving division of unit fractions by non-zero whole numbers and division of whole numbers by unit fractions, e.g., by using visual fraction models and equations to represent the problem. For example, how much chocolate will each person get if 3 people share 1/2 lb of chocolate equally? How many 1/3-cup servings are in 2 cups of raisins?
Apply and extend previous understandings of multiplication and division to multiply and divide fractions.
Standard:
Apply and extend previous understandings of division to divide unit fractions by whole numbers and whole numbers by unit fractions. Solve real-world problems involving division of unit fractions by non-zero whole numbers and division of whole numbers by unit fractions, e.g., by using visual fraction models and equations to represent the problem. For example, how much chocolate will each person get if 3 people share 1/2 lb of chocolate equally? How many 1/3-cup servings are in 2 cups of raisins?
Standard Identifier: A-APR.1
Grade Range:
7–12
Domain:
Arithmetic with Polynomials and Rational Expressions
Discipline:
Algebra I
Conceptual Category:
Algebra
Cluster:
Perform arithmetic operations on polynomials. [Linear and quadratic]
Standard:
Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.
Perform arithmetic operations on polynomials. [Linear and quadratic]
Standard:
Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.
Standard Identifier: A-APR.1
Grade Range:
8–12
Domain:
Arithmetic with Polynomials and Rational Expressions
Discipline:
Math II
Conceptual Category:
Algebra
Cluster:
Perform arithmetic operations on polynomials. [Polynomials that simplify to quadratics]
Standard:
Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.
Perform arithmetic operations on polynomials. [Polynomials that simplify to quadratics]
Standard:
Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.
Standard Identifier: F-TF.8
Grade Range:
8–12
Domain:
Trigonometric Functions
Discipline:
Math II
Conceptual Category:
Functions
Cluster:
Prove and apply trigonometric identities.
Standard:
Prove the Pythagorean identity sin^2(θ ) + cos^2(θ ) = 1 and use it to find sin(θ ), cos(θ ), or tan(θ ) given sin(θ ), cos(θ ), or tan(θ ) and the quadrant of the angle.
Prove and apply trigonometric identities.
Standard:
Prove the Pythagorean identity sin^2(θ ) + cos^2(θ ) = 1 and use it to find sin(θ ), cos(θ ), or tan(θ ) given sin(θ ), cos(θ ), or tan(θ ) and the quadrant of the angle.
Standard Identifier: A-APR.1
Grade Range:
9–12
Domain:
Arithmetic with Polynomials and Rational Expressions
Discipline:
Math III
Conceptual Category:
Algebra
Cluster:
Perform arithmetic operations on polynomials. [Beyond quadratic]
Standard:
Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.
Perform arithmetic operations on polynomials. [Beyond quadratic]
Standard:
Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.
Standard Identifier: A-APR.1
Grade Range:
9–12
Domain:
Arithmetic with Polynomials and Rational Expressions
Discipline:
Algebra II
Conceptual Category:
Algebra
Cluster:
Perform arithmetic operations on polynomials. [Beyond quadratic]
Standard:
Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.
Perform arithmetic operations on polynomials. [Beyond quadratic]
Standard:
Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.
Standard Identifier: A-APR.2
Grade Range:
9–12
Domain:
Arithmetic with Polynomials and Rational Expressions
Discipline:
Algebra II
Conceptual Category:
Algebra
Cluster:
Understand the relationship between zeros and factors of polynomials.
Standard:
Know and apply the Remainder Theorem: For a polynomial p(x) and a number a, the remainder on division by x – a is p(a), so p(a) = 0 if and only if (x – a) is a factor of p(x).
Understand the relationship between zeros and factors of polynomials.
Standard:
Know and apply the Remainder Theorem: For a polynomial p(x) and a number a, the remainder on division by x – a is p(a), so p(a) = 0 if and only if (x – a) is a factor of p(x).
Standard Identifier: A-APR.2
Grade Range:
9–12
Domain:
Arithmetic with Polynomials and Rational Expressions
Discipline:
Math III
Conceptual Category:
Algebra
Cluster:
Understand the relationship between zeros and factors of polynomials.
Standard:
Know and apply the Remainder Theorem: For a polynomial p(x) and a number a, the remainder on division by x – a is p(a), so p(a) = 0 if and only if (x – a) is a factor of p(x).
Understand the relationship between zeros and factors of polynomials.
Standard:
Know and apply the Remainder Theorem: For a polynomial p(x) and a number a, the remainder on division by x – a is p(a), so p(a) = 0 if and only if (x – a) is a factor of p(x).
Standard Identifier: A-APR.3
Grade Range:
9–12
Domain:
Arithmetic with Polynomials and Rational Expressions
Discipline:
Math III
Conceptual Category:
Algebra
Cluster:
Understand the relationship between zeros and factors of polynomials.
Standard:
Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial.
Understand the relationship between zeros and factors of polynomials.
Standard:
Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial.
Showing 111 - 120 of 138 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881