Mathematics Standards
Remove this criterion from the search
Add a Domain
Remove this criterion from the search
Circles
Remove this criterion from the search
Geometry
Remove this criterion from the search
Linear, Quadratic, and Exponential Models
Remove this criterion from the search
Making Inferences and Justifying Conclusions
Results
Showing 41 - 50 of 93 Standards
Standard Identifier: F-LE.3
Grade Range:
7–12
Domain:
Linear, Quadratic, and Exponential Models
Discipline:
Math I
Conceptual Category:
Functions
Cluster:
Construct and compare linear, quadratic, and exponential models and solve problems. [Linear and exponential]
Standard:
Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function. *
Construct and compare linear, quadratic, and exponential models and solve problems. [Linear and exponential]
Standard:
Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function. *
Standard Identifier: F-LE.5
Grade Range:
7–12
Domain:
Linear, Quadratic, and Exponential Models
Discipline:
Math I
Conceptual Category:
Functions
Cluster:
Interpret expressions for functions in terms of the situation they model. [Linear and exponential of form f(x) = b^x + k]
Standard:
Interpret the parameters in a linear or exponential function in terms of a context. *
Interpret expressions for functions in terms of the situation they model. [Linear and exponential of form f(x) = b^x + k]
Standard:
Interpret the parameters in a linear or exponential function in terms of a context. *
Standard Identifier: F-LE.5
Grade Range:
7–12
Domain:
Linear, Quadratic, and Exponential Models
Discipline:
Algebra I
Conceptual Category:
Functions
Cluster:
Interpret expressions for functions in terms of the situation they model.
Standard:
Interpret the parameters in a linear or exponential function in terms of a context. * [Linear and exponential of form f(x) = b^x + k]
Interpret expressions for functions in terms of the situation they model.
Standard:
Interpret the parameters in a linear or exponential function in terms of a context. * [Linear and exponential of form f(x) = b^x + k]
Standard Identifier: F-LE.6
Grade Range:
7–12
Domain:
Linear, Quadratic, and Exponential Models
Discipline:
Algebra I
Conceptual Category:
Functions
Cluster:
Interpret expressions for functions in terms of the situation they model.
Standard:
Apply quadratic functions to physical problems, such as the motion of an object under the force of gravity. CA *
Interpret expressions for functions in terms of the situation they model.
Standard:
Apply quadratic functions to physical problems, such as the motion of an object under the force of gravity. CA *
Standard Identifier: 8.G.1.a
Grade:
8
Domain:
Geometry
Cluster:
Understand congruence and similarity using physical models, transparencies, or geometry software.
Standard:
Verify experimentally the properties of rotations, reflections, and translations: Lines are taken to lines, and line segments to line segments of the same length.
Understand congruence and similarity using physical models, transparencies, or geometry software.
Standard:
Verify experimentally the properties of rotations, reflections, and translations: Lines are taken to lines, and line segments to line segments of the same length.
Standard Identifier: 8.G.1.b
Grade:
8
Domain:
Geometry
Cluster:
Understand congruence and similarity using physical models, transparencies, or geometry software.
Standard:
Verify experimentally the properties of rotations, reflections, and translations: Angles are taken to angles of the same measure.
Understand congruence and similarity using physical models, transparencies, or geometry software.
Standard:
Verify experimentally the properties of rotations, reflections, and translations: Angles are taken to angles of the same measure.
Standard Identifier: 8.G.1.c
Grade:
8
Domain:
Geometry
Cluster:
Understand congruence and similarity using physical models, transparencies, or geometry software.
Standard:
Verify experimentally the properties of rotations, reflections, and translations: Parallel lines are taken to parallel lines.
Understand congruence and similarity using physical models, transparencies, or geometry software.
Standard:
Verify experimentally the properties of rotations, reflections, and translations: Parallel lines are taken to parallel lines.
Standard Identifier: 8.G.2
Grade:
8
Domain:
Geometry
Cluster:
Understand congruence and similarity using physical models, transparencies, or geometry software.
Standard:
Understand that a two-dimensional figure is congruent to another if the second can be obtained from the first by a sequence of rotations, reflections, and translations; given two congruent figures, describe a sequence that exhibits the congruence between them.
Understand congruence and similarity using physical models, transparencies, or geometry software.
Standard:
Understand that a two-dimensional figure is congruent to another if the second can be obtained from the first by a sequence of rotations, reflections, and translations; given two congruent figures, describe a sequence that exhibits the congruence between them.
Standard Identifier: 8.G.3
Grade:
8
Domain:
Geometry
Cluster:
Understand congruence and similarity using physical models, transparencies, or geometry software.
Standard:
Describe the effect of dilations, translations, rotations, and reflections on two-dimensional figures using coordinates.
Understand congruence and similarity using physical models, transparencies, or geometry software.
Standard:
Describe the effect of dilations, translations, rotations, and reflections on two-dimensional figures using coordinates.
Standard Identifier: 8.G.4
Grade:
8
Domain:
Geometry
Cluster:
Understand congruence and similarity using physical models, transparencies, or geometry software.
Standard:
Understand that a two-dimensional figure is similar to another if the second can be obtained from the first by a sequence of rotations, reflections, translations, and dilations; given two similar two-dimensional figures, describe a sequence that exhibits the similarity between them.
Understand congruence and similarity using physical models, transparencies, or geometry software.
Standard:
Understand that a two-dimensional figure is similar to another if the second can be obtained from the first by a sequence of rotations, reflections, translations, and dilations; given two similar two-dimensional figures, describe a sequence that exhibits the similarity between them.
Showing 41 - 50 of 93 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881