Mathematics Standards
Remove this criterion from the search
Arithmetic with Polynomials and Rational Expressions
Remove this criterion from the search
Conditional Probability and the Rules of Probability
Remove this criterion from the search
Creating Equations
Remove this criterion from the search
Interpreting Categorical and Quantitative Data
Results
Showing 51 - 60 of 95 Standards
Standard Identifier: S-CP.9
Grade Range:
8–12
Domain:
Conditional Probability and the Rules of Probability
Discipline:
Geometry
Conceptual Category:
Statistics and Probability
Cluster:
Use the rules of probability to compute probabilities of compound events in a uniform probability model.
Standard:
(+) Use permutations and combinations to compute probabilities of compound events and solve problems. *
Use the rules of probability to compute probabilities of compound events in a uniform probability model.
Standard:
(+) Use permutations and combinations to compute probabilities of compound events and solve problems. *
Standard Identifier: A-APR.1
Grade Range:
9–12
Domain:
Arithmetic with Polynomials and Rational Expressions
Discipline:
Algebra II
Conceptual Category:
Algebra
Cluster:
Perform arithmetic operations on polynomials. [Beyond quadratic]
Standard:
Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.
Perform arithmetic operations on polynomials. [Beyond quadratic]
Standard:
Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.
Standard Identifier: A-APR.1
Grade Range:
9–12
Domain:
Arithmetic with Polynomials and Rational Expressions
Discipline:
Math III
Conceptual Category:
Algebra
Cluster:
Perform arithmetic operations on polynomials. [Beyond quadratic]
Standard:
Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.
Perform arithmetic operations on polynomials. [Beyond quadratic]
Standard:
Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.
Standard Identifier: A-APR.2
Grade Range:
9–12
Domain:
Arithmetic with Polynomials and Rational Expressions
Discipline:
Math III
Conceptual Category:
Algebra
Cluster:
Understand the relationship between zeros and factors of polynomials.
Standard:
Know and apply the Remainder Theorem: For a polynomial p(x) and a number a, the remainder on division by x – a is p(a), so p(a) = 0 if and only if (x – a) is a factor of p(x).
Understand the relationship between zeros and factors of polynomials.
Standard:
Know and apply the Remainder Theorem: For a polynomial p(x) and a number a, the remainder on division by x – a is p(a), so p(a) = 0 if and only if (x – a) is a factor of p(x).
Standard Identifier: A-APR.2
Grade Range:
9–12
Domain:
Arithmetic with Polynomials and Rational Expressions
Discipline:
Algebra II
Conceptual Category:
Algebra
Cluster:
Understand the relationship between zeros and factors of polynomials.
Standard:
Know and apply the Remainder Theorem: For a polynomial p(x) and a number a, the remainder on division by x – a is p(a), so p(a) = 0 if and only if (x – a) is a factor of p(x).
Understand the relationship between zeros and factors of polynomials.
Standard:
Know and apply the Remainder Theorem: For a polynomial p(x) and a number a, the remainder on division by x – a is p(a), so p(a) = 0 if and only if (x – a) is a factor of p(x).
Standard Identifier: A-APR.3
Grade Range:
9–12
Domain:
Arithmetic with Polynomials and Rational Expressions
Discipline:
Algebra II
Conceptual Category:
Algebra
Cluster:
Understand the relationship between zeros and factors of polynomials.
Standard:
Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial.
Understand the relationship between zeros and factors of polynomials.
Standard:
Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial.
Standard Identifier: A-APR.3
Grade Range:
9–12
Domain:
Arithmetic with Polynomials and Rational Expressions
Discipline:
Math III
Conceptual Category:
Algebra
Cluster:
Understand the relationship between zeros and factors of polynomials.
Standard:
Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial.
Understand the relationship between zeros and factors of polynomials.
Standard:
Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial.
Standard Identifier: A-APR.4
Grade Range:
9–12
Domain:
Arithmetic with Polynomials and Rational Expressions
Discipline:
Math III
Conceptual Category:
Algebra
Cluster:
Use polynomial identities to solve problems.
Standard:
Prove polynomial identities and use them to describe numerical relationships. For example, the polynomial identity (x^2 + y^2)^2= (x^2 – y^2)^2 + (2xy)^2 can be used to generate Pythagorean triples.
Use polynomial identities to solve problems.
Standard:
Prove polynomial identities and use them to describe numerical relationships. For example, the polynomial identity (x^2 + y^2)^2= (x^2 – y^2)^2 + (2xy)^2 can be used to generate Pythagorean triples.
Standard Identifier: A-APR.4
Grade Range:
9–12
Domain:
Arithmetic with Polynomials and Rational Expressions
Discipline:
Algebra II
Conceptual Category:
Algebra
Cluster:
Use polynomial identities to solve problems.
Standard:
Prove polynomial identities and use them to describe numerical relationships. For example, the polynomial identity (x^2 + y^2)2= (x^2 – y^2)^2 + (2xy)^2 can be used to generate Pythagorean triples.
Use polynomial identities to solve problems.
Standard:
Prove polynomial identities and use them to describe numerical relationships. For example, the polynomial identity (x^2 + y^2)2= (x^2 – y^2)^2 + (2xy)^2 can be used to generate Pythagorean triples.
Standard Identifier: A-APR.5
Grade Range:
9–12
Domain:
Arithmetic with Polynomials and Rational Expressions
Discipline:
Algebra II
Conceptual Category:
Algebra
Cluster:
Use polynomial identities to solve problems.
Standard:
(+) Know and apply the Binomial Theorem for the expansion of (x + y)^n in powers of x and y for a positive integer n, where x and y are any numbers, with coefficients determined for example by Pascal’s Triangle.
Footnote:
The Binomial Theorem can be proved by mathematical induction or by a combinatorial argument.
Use polynomial identities to solve problems.
Standard:
(+) Know and apply the Binomial Theorem for the expansion of (x + y)^n in powers of x and y for a positive integer n, where x and y are any numbers, with coefficients determined for example by Pascal’s Triangle.
Footnote:
The Binomial Theorem can be proved by mathematical induction or by a combinatorial argument.
Showing 51 - 60 of 95 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881