Mathematics Standards
Remove this criterion from the search
Expressions and Equations
Remove this criterion from the search
Interpreting Categorical and Quantitative Data
Remove this criterion from the search
Interpreting Functions
Remove this criterion from the search
Similarity, Right Triangles, and Trigonometry
Remove this criterion from the search
Statistics and Probability
Remove this criterion from the search
The Complex Number System
Results
Showing 31 - 40 of 166 Standards
Standard Identifier: 7.SP.7.a
Grade:
7
Domain:
Statistics and Probability
Cluster:
Investigate chance processes and develop, use, and evaluate probability models.
Standard:
Develop a probability model and use it to find probabilities of events. Compare probabilities from a model to observed frequencies; if the agreement is not good, explain possible sources of the discrepancy. Develop a uniform probability model by assigning equal probability to all outcomes, and use the model to determine probabilities of events. For example, if a student is selected at random from a class, find the probability that Jane will be selected and the probability that a girl will be selected.
Investigate chance processes and develop, use, and evaluate probability models.
Standard:
Develop a probability model and use it to find probabilities of events. Compare probabilities from a model to observed frequencies; if the agreement is not good, explain possible sources of the discrepancy. Develop a uniform probability model by assigning equal probability to all outcomes, and use the model to determine probabilities of events. For example, if a student is selected at random from a class, find the probability that Jane will be selected and the probability that a girl will be selected.
Standard Identifier: 7.SP.7.b
Grade:
7
Domain:
Statistics and Probability
Cluster:
Investigate chance processes and develop, use, and evaluate probability models.
Standard:
Develop a probability model and use it to find probabilities of events. Compare probabilities from a model to observed frequencies; if the agreement is not good, explain possible sources of the discrepancy. Develop a probability model (which may not be uniform) by observing frequencies in data generated from a chance process. For example, find the approximate probability that a spinning penny will land heads up or that a tossed paper cup will land open-end down. Do the outcomes for the spinning penny appear to be equally likely based on the observed frequencies?
Investigate chance processes and develop, use, and evaluate probability models.
Standard:
Develop a probability model and use it to find probabilities of events. Compare probabilities from a model to observed frequencies; if the agreement is not good, explain possible sources of the discrepancy. Develop a probability model (which may not be uniform) by observing frequencies in data generated from a chance process. For example, find the approximate probability that a spinning penny will land heads up or that a tossed paper cup will land open-end down. Do the outcomes for the spinning penny appear to be equally likely based on the observed frequencies?
Standard Identifier: 7.SP.8.a
Grade:
7
Domain:
Statistics and Probability
Cluster:
Investigate chance processes and develop, use, and evaluate probability models.
Standard:
Find probabilities of compound events using organized lists, tables, tree diagrams, and simulation. Understand that, just as with simple events, the probability of a compound event is the fraction of outcomes in the sample space for which the compound event occurs.
Investigate chance processes and develop, use, and evaluate probability models.
Standard:
Find probabilities of compound events using organized lists, tables, tree diagrams, and simulation. Understand that, just as with simple events, the probability of a compound event is the fraction of outcomes in the sample space for which the compound event occurs.
Standard Identifier: 7.SP.8.b
Grade:
7
Domain:
Statistics and Probability
Cluster:
Investigate chance processes and develop, use, and evaluate probability models.
Standard:
Find probabilities of compound events using organized lists, tables, tree diagrams, and simulation. Represent sample spaces for compound events using methods such as organized lists, tables and tree diagrams. For an event described in everyday language (e.g., “rolling double sixes”), identify the outcomes in the sample space which compose the event.
Investigate chance processes and develop, use, and evaluate probability models.
Standard:
Find probabilities of compound events using organized lists, tables, tree diagrams, and simulation. Represent sample spaces for compound events using methods such as organized lists, tables and tree diagrams. For an event described in everyday language (e.g., “rolling double sixes”), identify the outcomes in the sample space which compose the event.
Standard Identifier: 7.SP.8.c
Grade:
7
Domain:
Statistics and Probability
Cluster:
Investigate chance processes and develop, use, and evaluate probability models.
Standard:
Find probabilities of compound events using organized lists, tables, tree diagrams, and simulation. Design and use a simulation to generate frequencies for compound events. For example, use random digits as a simulation tool to approximate the answer to the question: If 40% of donors have type A blood, what is the probability that it will take at least 4 donors to find one with type A blood?
Investigate chance processes and develop, use, and evaluate probability models.
Standard:
Find probabilities of compound events using organized lists, tables, tree diagrams, and simulation. Design and use a simulation to generate frequencies for compound events. For example, use random digits as a simulation tool to approximate the answer to the question: If 40% of donors have type A blood, what is the probability that it will take at least 4 donors to find one with type A blood?
Standard Identifier: F-IF.1
Grade Range:
7–12
Domain:
Interpreting Functions
Discipline:
Algebra I
Conceptual Category:
Functions
Cluster:
Understand the concept of a function and use function notation. [Learn as general principle; focus on linear and exponential and on arithmetic and geometric sequences.]
Standard:
Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then f(x) denotes the output of f corresponding to the input x. The graph of f is the graph of the equation y = f(x).
Understand the concept of a function and use function notation. [Learn as general principle; focus on linear and exponential and on arithmetic and geometric sequences.]
Standard:
Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then f(x) denotes the output of f corresponding to the input x. The graph of f is the graph of the equation y = f(x).
Standard Identifier: F-IF.1
Grade Range:
7–12
Domain:
Interpreting Functions
Discipline:
Math I
Conceptual Category:
Functions
Cluster:
Understand the concept of a function and use function notation. [Learn as general principle. Focus on linear and exponential (integer domains) and on arithmetic and geometric sequences.]
Standard:
Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then f(x) denotes the output of f corresponding to the input x. The graph of f is the graph of the equation y = f(x).
Understand the concept of a function and use function notation. [Learn as general principle. Focus on linear and exponential (integer domains) and on arithmetic and geometric sequences.]
Standard:
Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then f(x) denotes the output of f corresponding to the input x. The graph of f is the graph of the equation y = f(x).
Standard Identifier: F-IF.2
Grade Range:
7–12
Domain:
Interpreting Functions
Discipline:
Math I
Conceptual Category:
Functions
Cluster:
Understand the concept of a function and use function notation. [Learn as general principle. Focus on linear and exponential (integer domains) and on arithmetic and geometric sequences.]
Standard:
Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.
Understand the concept of a function and use function notation. [Learn as general principle. Focus on linear and exponential (integer domains) and on arithmetic and geometric sequences.]
Standard:
Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.
Standard Identifier: F-IF.2
Grade Range:
7–12
Domain:
Interpreting Functions
Discipline:
Algebra I
Conceptual Category:
Functions
Cluster:
Understand the concept of a function and use function notation. [Learn as general principle; focus on linear and exponential and on arithmetic and geometric sequences.]
Standard:
Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.
Understand the concept of a function and use function notation. [Learn as general principle; focus on linear and exponential and on arithmetic and geometric sequences.]
Standard:
Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.
Standard Identifier: F-IF.3
Grade Range:
7–12
Domain:
Interpreting Functions
Discipline:
Algebra I
Conceptual Category:
Functions
Cluster:
Understand the concept of a function and use function notation. [Learn as general principle; focus on linear and exponential and on arithmetic and geometric sequences.]
Standard:
Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by f(0) = f(1) = 1, f(n + 1) = f(n) + f(n − 1) for n ≥ 1.
Understand the concept of a function and use function notation. [Learn as general principle; focus on linear and exponential and on arithmetic and geometric sequences.]
Standard:
Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by f(0) = f(1) = 1, f(n + 1) = f(n) + f(n − 1) for n ≥ 1.
Showing 31 - 40 of 166 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881