Mathematics Standards
Results
Showing 31 - 40 of 60 Standards
Standard Identifier: G-GPE.4
Grade Range:
8–12
Domain:
Expressing Geometric Properties with Equations
Discipline:
Geometry
Conceptual Category:
Geometry
Cluster:
Use coordinates to prove simple geometric theorems algebraically. [Include distance formula; relate to Pythagorean Theorem.]
Standard:
Use coordinates to prove simple geometric theorems algebraically. For example, prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle; prove or disprove that the point (1, √3) lies on the circle centered at the origin and containing the point (0, 2).
Use coordinates to prove simple geometric theorems algebraically. [Include distance formula; relate to Pythagorean Theorem.]
Standard:
Use coordinates to prove simple geometric theorems algebraically. For example, prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle; prove or disprove that the point (1, √3) lies on the circle centered at the origin and containing the point (0, 2).
Standard Identifier: G-GPE.4
Grade Range:
8–12
Domain:
Expressing Geometric Properties with Equations
Discipline:
Math II
Conceptual Category:
Geometry
Cluster:
Use coordinates to prove simple geometric theorems algebraically.
Standard:
Use coordinates to prove simple geometric theorems algebraically. For example, prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle; prove or disprove that the point (1, √3) lies on the circle centered at the origin and containing the point (0, 2). [Include simple circle theorems.]
Use coordinates to prove simple geometric theorems algebraically.
Standard:
Use coordinates to prove simple geometric theorems algebraically. For example, prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle; prove or disprove that the point (1, √3) lies on the circle centered at the origin and containing the point (0, 2). [Include simple circle theorems.]
Standard Identifier: G-GPE.5
Grade Range:
8–12
Domain:
Expressing Geometric Properties with Equations
Discipline:
Geometry
Conceptual Category:
Geometry
Cluster:
Use coordinates to prove simple geometric theorems algebraically. [Include distance formula; relate to Pythagorean Theorem.]
Standard:
Prove the slope criteria for parallel and perpendicular lines and use them to solve geometric problems (e.g., find the equation of a line parallel or perpendicular to a given line that passes through a given point).
Use coordinates to prove simple geometric theorems algebraically. [Include distance formula; relate to Pythagorean Theorem.]
Standard:
Prove the slope criteria for parallel and perpendicular lines and use them to solve geometric problems (e.g., find the equation of a line parallel or perpendicular to a given line that passes through a given point).
Standard Identifier: G-GPE.6
Grade Range:
8–12
Domain:
Expressing Geometric Properties with Equations
Discipline:
Geometry
Conceptual Category:
Geometry
Cluster:
Use coordinates to prove simple geometric theorems algebraically. [Include distance formula; relate to Pythagorean Theorem.]
Standard:
Find the point on a directed line segment between two given points that partitions the segment in a given ratio.
Use coordinates to prove simple geometric theorems algebraically. [Include distance formula; relate to Pythagorean Theorem.]
Standard:
Find the point on a directed line segment between two given points that partitions the segment in a given ratio.
Standard Identifier: G-GPE.6
Grade Range:
8–12
Domain:
Expressing Geometric Properties with Equations
Discipline:
Math II
Conceptual Category:
Geometry
Cluster:
Use coordinates to prove simple geometric theorems algebraically.
Standard:
Find the point on a directed line segment between two given points that partitions the segment in a given ratio.
Use coordinates to prove simple geometric theorems algebraically.
Standard:
Find the point on a directed line segment between two given points that partitions the segment in a given ratio.
Standard Identifier: G-GPE.7
Grade Range:
8–12
Domain:
Expressing Geometric Properties with Equations
Discipline:
Geometry
Conceptual Category:
Geometry
Cluster:
Use coordinates to prove simple geometric theorems algebraically. [Include distance formula; relate to Pythagorean Theorem.]
Standard:
Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula. *
Use coordinates to prove simple geometric theorems algebraically. [Include distance formula; relate to Pythagorean Theorem.]
Standard:
Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula. *
Standard Identifier: G-MG.1
Grade Range:
8–12
Domain:
Modeling with Geometry
Discipline:
Geometry
Conceptual Category:
Geometry
Cluster:
Apply geometric concepts in modeling situations.
Standard:
Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder). *
Apply geometric concepts in modeling situations.
Standard:
Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder). *
Standard Identifier: G-MG.2
Grade Range:
8–12
Domain:
Modeling with Geometry
Discipline:
Geometry
Conceptual Category:
Geometry
Cluster:
Apply geometric concepts in modeling situations.
Standard:
Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot). *
Apply geometric concepts in modeling situations.
Standard:
Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot). *
Standard Identifier: G-MG.3
Grade Range:
8–12
Domain:
Modeling with Geometry
Discipline:
Geometry
Conceptual Category:
Geometry
Cluster:
Apply geometric concepts in modeling situations.
Standard:
Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios). *
Apply geometric concepts in modeling situations.
Standard:
Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios). *
Standard Identifier: N-RN.1
Grade Range:
8–12
Domain:
The Real Number System
Discipline:
Math II
Conceptual Category:
Number and Quantity
Cluster:
Extend the properties of exponents to rational exponents.
Standard:
Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define 5^1/3 to be the cube root of 5 because we want (5^1/3)^3 = 5(^1/3)^3 to hold, so (5^1/3)^3 must equal 5.
Extend the properties of exponents to rational exponents.
Standard:
Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define 5^1/3 to be the cube root of 5 because we want (5^1/3)^3 = 5(^1/3)^3 to hold, so (5^1/3)^3 must equal 5.
Showing 31 - 40 of 60 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881