Mathematics Standards
Remove this criterion from the search
Arithmetic with Polynomials and Rational Expressions
Remove this criterion from the search
Conditional Probability and the Rules of Probability
Remove this criterion from the search
Congruence
Remove this criterion from the search
Expressing Geometric Properties with Equations
Remove this criterion from the search
Interpreting Functions
Remove this criterion from the search
Using Probability to Make Decisions
Results
Showing 31 - 40 of 145 Standards
Standard Identifier: G-CO.7
Grade Range:
7–12
Domain:
Congruence
Discipline:
Math I
Conceptual Category:
Geometry
Cluster:
Understand congruence in terms of rigid motions. [Build on rigid motions as a familiar starting point for development of concept of geometric proof.]
Standard:
Use the definition of congruence in terms of rigid motions to show that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent.
Understand congruence in terms of rigid motions. [Build on rigid motions as a familiar starting point for development of concept of geometric proof.]
Standard:
Use the definition of congruence in terms of rigid motions to show that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent.
Standard Identifier: G-CO.8
Grade Range:
7–12
Domain:
Congruence
Discipline:
Math I
Conceptual Category:
Geometry
Cluster:
Understand congruence in terms of rigid motions. [Build on rigid motions as a familiar starting point for development of concept of geometric proof.]
Standard:
Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow from the definition of congruence in terms of rigid motions.
Understand congruence in terms of rigid motions. [Build on rigid motions as a familiar starting point for development of concept of geometric proof.]
Standard:
Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow from the definition of congruence in terms of rigid motions.
Standard Identifier: G-GPE.4
Grade Range:
7–12
Domain:
Expressing Geometric Properties with Equations
Discipline:
Math I
Conceptual Category:
Geometry
Cluster:
Use coordinates to prove simple geometric theorems algebraically. [Include distance formula; relate to Pythagorean Theorem.]
Standard:
Use coordinates to prove simple geometric theorems algebraically. For example, prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle; prove or disprove that the point (1, √3) lies on the circle centered at the origin and containing the point (0, 2).
Use coordinates to prove simple geometric theorems algebraically. [Include distance formula; relate to Pythagorean Theorem.]
Standard:
Use coordinates to prove simple geometric theorems algebraically. For example, prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle; prove or disprove that the point (1, √3) lies on the circle centered at the origin and containing the point (0, 2).
Standard Identifier: G-GPE.5
Grade Range:
7–12
Domain:
Expressing Geometric Properties with Equations
Discipline:
Math I
Conceptual Category:
Geometry
Cluster:
Use coordinates to prove simple geometric theorems algebraically. [Include distance formula; relate to Pythagorean Theorem.]
Standard:
Prove the slope criteria for parallel and perpendicular lines and use them to solve geometric problems (e.g., find the equation of a line parallel or perpendicular to a given line that passes through a given point).
Use coordinates to prove simple geometric theorems algebraically. [Include distance formula; relate to Pythagorean Theorem.]
Standard:
Prove the slope criteria for parallel and perpendicular lines and use them to solve geometric problems (e.g., find the equation of a line parallel or perpendicular to a given line that passes through a given point).
Standard Identifier: G-GPE.7
Grade Range:
7–12
Domain:
Expressing Geometric Properties with Equations
Discipline:
Math I
Conceptual Category:
Geometry
Cluster:
Use coordinates to prove simple geometric theorems algebraically. [Include distance formula; relate to Pythagorean Theorem.]
Standard:
Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula. *
Use coordinates to prove simple geometric theorems algebraically. [Include distance formula; relate to Pythagorean Theorem.]
Standard:
Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula. *
Standard Identifier: A-APR.1
Grade Range:
8–12
Domain:
Arithmetic with Polynomials and Rational Expressions
Discipline:
Math II
Conceptual Category:
Algebra
Cluster:
Perform arithmetic operations on polynomials. [Polynomials that simplify to quadratics]
Standard:
Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.
Perform arithmetic operations on polynomials. [Polynomials that simplify to quadratics]
Standard:
Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.
Standard Identifier: F-IF.4
Grade Range:
8–12
Domain:
Interpreting Functions
Discipline:
Math II
Conceptual Category:
Functions
Cluster:
Interpret functions that arise in applications in terms of the context. [Quadratic]
Standard:
For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. *
Interpret functions that arise in applications in terms of the context. [Quadratic]
Standard:
For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. *
Standard Identifier: F-IF.5
Grade Range:
8–12
Domain:
Interpreting Functions
Discipline:
Math II
Conceptual Category:
Functions
Cluster:
Interpret functions that arise in applications in terms of the context. [Quadratic]
Standard:
Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. *
Interpret functions that arise in applications in terms of the context. [Quadratic]
Standard:
Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. *
Standard Identifier: F-IF.6
Grade Range:
8–12
Domain:
Interpreting Functions
Discipline:
Math II
Conceptual Category:
Functions
Cluster:
Interpret functions that arise in applications in terms of the context. [Quadratic]
Standard:
Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. *
Interpret functions that arise in applications in terms of the context. [Quadratic]
Standard:
Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. *
Standard Identifier: F-IF.7.a
Grade Range:
8–12
Domain:
Interpreting Functions
Discipline:
Math II
Conceptual Category:
Functions
Cluster:
Analyze functions using different representations. [Linear, exponential, quadratic, absolute value, step, piecewise-defined]
Standard:
Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. * Graph linear and quadratic functions and show intercepts, maxima, and minima. *
Analyze functions using different representations. [Linear, exponential, quadratic, absolute value, step, piecewise-defined]
Standard:
Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. * Graph linear and quadratic functions and show intercepts, maxima, and minima. *
Showing 31 - 40 of 145 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881