Mathematics Standards
Remove this criterion from the search
Circles
Remove this criterion from the search
Interpreting Functions
Remove this criterion from the search
Measurement and Data
Remove this criterion from the search
Reasoning with Equations and Inequalities
Remove this criterion from the search
Statistics and Probability
Remove this criterion from the search
The Complex Number System
Remove this criterion from the search
The Real Number System
Results
Showing 101 - 110 of 168 Standards
Standard Identifier: F-IF.8.a
Grade Range:
7–12
Domain:
Interpreting Functions
Discipline:
Algebra I
Conceptual Category:
Functions
Cluster:
Analyze functions using different representations. [Linear, exponential, quadratic, absolute value, step, piecewise-defined]
Standard:
Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function. Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.
Analyze functions using different representations. [Linear, exponential, quadratic, absolute value, step, piecewise-defined]
Standard:
Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function. Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.
Standard Identifier: F-IF.8.b
Grade Range:
7–12
Domain:
Interpreting Functions
Discipline:
Algebra I
Conceptual Category:
Functions
Cluster:
Analyze functions using different representations. [Linear, exponential, quadratic, absolute value, step, piecewise-defined]
Standard:
Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function. Use the properties of exponents to interpret expressions for exponential functions. For example, identify percent rate of change in functions such as y = (1.02)^t, y = (0.97)^t, y = (1.01)^12t, and y = (1.2)^t/10, and classify them as representing exponential growth or decay.
Analyze functions using different representations. [Linear, exponential, quadratic, absolute value, step, piecewise-defined]
Standard:
Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function. Use the properties of exponents to interpret expressions for exponential functions. For example, identify percent rate of change in functions such as y = (1.02)^t, y = (0.97)^t, y = (1.01)^12t, and y = (1.2)^t/10, and classify them as representing exponential growth or decay.
Standard Identifier: F-IF.9
Grade Range:
7–12
Domain:
Interpreting Functions
Discipline:
Algebra I
Conceptual Category:
Functions
Cluster:
Analyze functions using different representations. [Linear, exponential, quadratic, absolute value, step, piecewise-defined]
Standard:
Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.
Analyze functions using different representations. [Linear, exponential, quadratic, absolute value, step, piecewise-defined]
Standard:
Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.
Standard Identifier: F-IF.9
Grade Range:
7–12
Domain:
Interpreting Functions
Discipline:
Math I
Conceptual Category:
Functions
Cluster:
Analyze functions using different representations. [Linear and exponential]
Standard:
Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).
Analyze functions using different representations. [Linear and exponential]
Standard:
Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).
Standard Identifier: N-RN.1
Grade Range:
7–12
Domain:
The Real Number System
Discipline:
Algebra I
Conceptual Category:
Number and Quantity
Cluster:
Extend the properties of exponents to rational exponents.
Standard:
Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define 5^1/3 to be the cube root of 5 because we want (5^1/3)^3 = 5(^1/3)^3 to hold, so (5^1/3)^3 must equal 5.
Extend the properties of exponents to rational exponents.
Standard:
Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define 5^1/3 to be the cube root of 5 because we want (5^1/3)^3 = 5(^1/3)^3 to hold, so (5^1/3)^3 must equal 5.
Standard Identifier: N-RN.2
Grade Range:
7–12
Domain:
The Real Number System
Discipline:
Algebra I
Conceptual Category:
Number and Quantity
Cluster:
Extend the properties of exponents to rational exponents.
Standard:
Rewrite expressions involving radicals and rational exponents using the properties of exponents.
Extend the properties of exponents to rational exponents.
Standard:
Rewrite expressions involving radicals and rational exponents using the properties of exponents.
Standard Identifier: N-RN.3
Grade Range:
7–12
Domain:
The Real Number System
Discipline:
Algebra I
Conceptual Category:
Number and Quantity
Cluster:
Use properties of rational and irrational numbers.
Standard:
Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.
Use properties of rational and irrational numbers.
Standard:
Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.
Standard Identifier: 8.SP.1
Grade:
8
Domain:
Statistics and Probability
Cluster:
Investigate patterns of association in bivariate data.
Standard:
Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association.
Investigate patterns of association in bivariate data.
Standard:
Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association.
Standard Identifier: 8.SP.2
Grade:
8
Domain:
Statistics and Probability
Cluster:
Investigate patterns of association in bivariate data.
Standard:
Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line.
Investigate patterns of association in bivariate data.
Standard:
Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line.
Standard Identifier: 8.SP.3
Grade:
8
Domain:
Statistics and Probability
Cluster:
Investigate patterns of association in bivariate data.
Standard:
Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept. For example, in a linear model for a biology experiment, interpret a slope of 1.5 cm/hr as meaning that an additional hour of sunlight each day is associated with an additional 1.5 cm in mature plant height.
Investigate patterns of association in bivariate data.
Standard:
Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept. For example, in a linear model for a biology experiment, interpret a slope of 1.5 cm/hr as meaning that an additional hour of sunlight each day is associated with an additional 1.5 cm in mature plant height.
Showing 101 - 110 of 168 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881