Skip to main content
California Department of Education Logo

Mathematics Standards




Results


Showing 31 - 40 of 77 Standards

Standard Identifier: F-IF.8.b

Grade Range: 8–12
Domain: Interpreting Functions
Discipline: Math II
Conceptual Category: Functions

Cluster:
Analyze functions using different representations. [Linear, exponential, quadratic, absolute value, step, piecewise-defined]

Standard:
Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function. Use the properties of exponents to interpret expressions for exponential functions. For example, identify percent rate of change in functions such as y = (1.02)^t, y = (0.97)^t, y = (1.01)^12t, and y = (1.2)^t/10, and classify them as representing exponential growth or decay.

Standard Identifier: F-IF.9

Grade Range: 8–12
Domain: Interpreting Functions
Discipline: Math II
Conceptual Category: Functions

Cluster:
Analyze functions using different representations. [Linear, exponential, quadratic, absolute value, step, piecewise-defined]

Standard:
Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.

Standard Identifier: G-SRT.1.a

Grade Range: 8–12
Domain: Similarity, Right Triangles, and Trigonometry
Discipline: Math II
Conceptual Category: Geometry

Cluster:
Understand similarity in terms of similarity transformations.

Standard:
Verify experimentally the properties of dilations given by a center and a scale factor: A dilation takes a line not passing through the center of the dilation to a parallel line, and leaves a line passing through the center unchanged.

Standard Identifier: G-SRT.1.a

Grade Range: 8–12
Domain: Similarity, Right Triangles, and Trigonometry
Discipline: Geometry
Conceptual Category: Geometry

Cluster:
Understand similarity in terms of similarity transformations.

Standard:
Verify experimentally the properties of dilations given by a center and a scale factor: A dilation takes a line not passing through the center of the dilation to a parallel line, and leaves a line passing through the center unchanged.

Standard Identifier: G-SRT.1.b

Grade Range: 8–12
Domain: Similarity, Right Triangles, and Trigonometry
Discipline: Geometry
Conceptual Category: Geometry

Cluster:
Understand similarity in terms of similarity transformations.

Standard:
Verify experimentally the properties of dilations given by a center and a scale factor: The dilation of a line segment is longer or shorter in the ratio given by the scale factor.

Standard Identifier: G-SRT.1.b

Grade Range: 8–12
Domain: Similarity, Right Triangles, and Trigonometry
Discipline: Math II
Conceptual Category: Geometry

Cluster:
Understand similarity in terms of similarity transformations.

Standard:
Verify experimentally the properties of dilations given by a center and a scale factor: The dilation of a line segment is longer or shorter in the ratio given by the scale factor.

Standard Identifier: G-SRT.10

Grade Range: 8–12
Domain: Similarity, Right Triangles, and Trigonometry
Discipline: Geometry
Conceptual Category: Geometry

Cluster:
Apply trigonometry to general triangles.

Standard:
(+) Prove the Laws of Sines and Cosines and use them to solve problems.

Standard Identifier: G-SRT.11

Grade Range: 8–12
Domain: Similarity, Right Triangles, and Trigonometry
Discipline: Geometry
Conceptual Category: Geometry

Cluster:
Apply trigonometry to general triangles.

Standard:
(+) Understand and apply the Law of Sines and the Law of Cosines to find unknown measurements in right and non-right triangles (e.g., surveying problems, resultant forces).

Standard Identifier: G-SRT.2

Grade Range: 8–12
Domain: Similarity, Right Triangles, and Trigonometry
Discipline: Geometry
Conceptual Category: Geometry

Cluster:
Understand similarity in terms of similarity transformations.

Standard:
Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar; explain using similarity transformations the meaning of similarity for triangles as the equality of all corresponding pairs of angles and the proportionality of all corresponding pairs of sides.

Standard Identifier: G-SRT.2

Grade Range: 8–12
Domain: Similarity, Right Triangles, and Trigonometry
Discipline: Math II
Conceptual Category: Geometry

Cluster:
Understand similarity in terms of similarity transformations.

Standard:
Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar; explain using similarity transformations the meaning of similarity for triangles as the equality of all corresponding pairs of angles and the proportionality of all corresponding pairs of sides.

Showing 31 - 40 of 77 Standards


Questions: Curriculum Frameworks and Instructional Resources Division | CFIRD@cde.ca.gov | 916-319-0881