Mathematics Standards
Results
Showing 51 - 60 of 73 Standards
Standard Identifier: F-LE.6
Grade Range:
7–12
Domain:
Linear, Quadratic, and Exponential Models
Discipline:
Algebra I
Conceptual Category:
Functions
Cluster:
Interpret expressions for functions in terms of the situation they model.
Standard:
Apply quadratic functions to physical problems, such as the motion of an object under the force of gravity. CA *
Interpret expressions for functions in terms of the situation they model.
Standard:
Apply quadratic functions to physical problems, such as the motion of an object under the force of gravity. CA *
Standard Identifier: 8.SP.1
Grade:
8
Domain:
Statistics and Probability
Cluster:
Investigate patterns of association in bivariate data.
Standard:
Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association.
Investigate patterns of association in bivariate data.
Standard:
Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association.
Standard Identifier: 8.SP.2
Grade:
8
Domain:
Statistics and Probability
Cluster:
Investigate patterns of association in bivariate data.
Standard:
Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line.
Investigate patterns of association in bivariate data.
Standard:
Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line.
Standard Identifier: 8.SP.3
Grade:
8
Domain:
Statistics and Probability
Cluster:
Investigate patterns of association in bivariate data.
Standard:
Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept. For example, in a linear model for a biology experiment, interpret a slope of 1.5 cm/hr as meaning that an additional hour of sunlight each day is associated with an additional 1.5 cm in mature plant height.
Investigate patterns of association in bivariate data.
Standard:
Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept. For example, in a linear model for a biology experiment, interpret a slope of 1.5 cm/hr as meaning that an additional hour of sunlight each day is associated with an additional 1.5 cm in mature plant height.
Standard Identifier: 8.SP.4
Grade:
8
Domain:
Statistics and Probability
Cluster:
Investigate patterns of association in bivariate data.
Standard:
Understand that patterns of association can also be seen in bivariate categorical data by displaying frequencies and relative frequencies in a two-way table. Construct and interpret a two-way table summarizing data on two categorical variables collected from the same subjects. Use relative frequencies calculated for rows or columns to describe possible association between the two variables. For example, collect data from students in your class on whether or not they have a curfew on school nights and whether or not they have assigned chores at home. Is there evidence that those who have a curfew also tend to have chores?
Investigate patterns of association in bivariate data.
Standard:
Understand that patterns of association can also be seen in bivariate categorical data by displaying frequencies and relative frequencies in a two-way table. Construct and interpret a two-way table summarizing data on two categorical variables collected from the same subjects. Use relative frequencies calculated for rows or columns to describe possible association between the two variables. For example, collect data from students in your class on whether or not they have a curfew on school nights and whether or not they have assigned chores at home. Is there evidence that those who have a curfew also tend to have chores?
Standard Identifier: A-REI.4.a
Grade Range:
8–12
Domain:
Reasoning with Equations and Inequalities
Discipline:
Math II
Conceptual Category:
Algebra
Cluster:
Solve equations and inequalities in one variable. [Quadratics with real coefficients]
Standard:
Solve quadratic equations in one variable. Use the method of completing the square to transform any quadratic equation in x into an equation of the form (x – p)^2 = q that has the same solutions. Derive the quadratic formula from this form.
Solve equations and inequalities in one variable. [Quadratics with real coefficients]
Standard:
Solve quadratic equations in one variable. Use the method of completing the square to transform any quadratic equation in x into an equation of the form (x – p)^2 = q that has the same solutions. Derive the quadratic formula from this form.
Standard Identifier: A-REI.4.b
Grade Range:
8–12
Domain:
Reasoning with Equations and Inequalities
Discipline:
Math II
Conceptual Category:
Algebra
Cluster:
Solve equations and inequalities in one variable. [Quadratics with real coefficients]
Standard:
Solve quadratic equations in one variable. Solve quadratic equations by inspection (e.g., for x^2 = 49), taking square roots, completing the square, the quadratic formula, and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as a ± bi for real numbers a and b.
Solve equations and inequalities in one variable. [Quadratics with real coefficients]
Standard:
Solve quadratic equations in one variable. Solve quadratic equations by inspection (e.g., for x^2 = 49), taking square roots, completing the square, the quadratic formula, and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as a ± bi for real numbers a and b.
Standard Identifier: A-REI.7
Grade Range:
8–12
Domain:
Reasoning with Equations and Inequalities
Discipline:
Math II
Conceptual Category:
Algebra
Cluster:
Solve systems of equations. [Linear-quadratic systems]
Standard:
Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically. For example, find the points of intersection between the line y = –3x and the circle x^2 + y^2 = 3.
Solve systems of equations. [Linear-quadratic systems]
Standard:
Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically. For example, find the points of intersection between the line y = –3x and the circle x^2 + y^2 = 3.
Standard Identifier: F-LE.3
Grade Range:
8–12
Domain:
Linear, Quadratic, and Exponential Models
Discipline:
Math II
Conceptual Category:
Functions
Cluster:
Construct and compare linear, quadratic, and exponential models and solve problems. [Include quadratic.]
Standard:
Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function. *
Construct and compare linear, quadratic, and exponential models and solve problems. [Include quadratic.]
Standard:
Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function. *
Standard Identifier: F-LE.6
Grade Range:
8–12
Domain:
Linear, Quadratic, and Exponential Models
Discipline:
Math II
Conceptual Category:
Functions
Cluster:
Interpret expressions for functions in terms of the situation they model.
Standard:
Apply quadratic functions to physical problems, such as the motion of an object under the force of gravity. CA *
Interpret expressions for functions in terms of the situation they model.
Standard:
Apply quadratic functions to physical problems, such as the motion of an object under the force of gravity. CA *
Showing 51 - 60 of 73 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881