Mathematics Standards
Remove this criterion from the search
Linear, Quadratic, and Exponential Models
Remove this criterion from the search
Modeling with Geometry
Remove this criterion from the search
Quantities
Remove this criterion from the search
The Complex Number System
Remove this criterion from the search
The Number System
Remove this criterion from the search
Trigonometric Functions
Results
Showing 41 - 50 of 81 Standards
Standard Identifier: N-Q.3
Grade Range:
7–12
Domain:
Quantities
Discipline:
Math I
Conceptual Category:
Number and Quantity
Cluster:
Reason quantitatively and use units to solve problems. [Foundation for work with expressions, equations, and functions]
Standard:
Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. *
Reason quantitatively and use units to solve problems. [Foundation for work with expressions, equations, and functions]
Standard:
Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. *
Standard Identifier: 8.NS.1
Grade:
8
Domain:
The Number System
Cluster:
Know that there are numbers that are not rational, and approximate them by rational numbers.
Standard:
Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion; for rational numbers show that the decimal expansion repeats eventually, and convert a decimal expansion which repeats eventually into a rational number.
Know that there are numbers that are not rational, and approximate them by rational numbers.
Standard:
Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion; for rational numbers show that the decimal expansion repeats eventually, and convert a decimal expansion which repeats eventually into a rational number.
Standard Identifier: 8.NS.2
Grade:
8
Domain:
The Number System
Cluster:
Know that there are numbers that are not rational, and approximate them by rational numbers.
Standard:
Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions (e.g.,π^2). For example, by truncating the decimal expansion of √2, show that √2 is between 1 and 2, then between 1.4 and 1.5, and explain how to continue on to get better approximations.
Know that there are numbers that are not rational, and approximate them by rational numbers.
Standard:
Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions (e.g.,π^2). For example, by truncating the decimal expansion of √2, show that √2 is between 1 and 2, then between 1.4 and 1.5, and explain how to continue on to get better approximations.
Standard Identifier: F-LE.3
Grade Range:
8–12
Domain:
Linear, Quadratic, and Exponential Models
Discipline:
Math II
Conceptual Category:
Functions
Cluster:
Construct and compare linear, quadratic, and exponential models and solve problems. [Include quadratic.]
Standard:
Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function. *
Construct and compare linear, quadratic, and exponential models and solve problems. [Include quadratic.]
Standard:
Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function. *
Standard Identifier: F-LE.6
Grade Range:
8–12
Domain:
Linear, Quadratic, and Exponential Models
Discipline:
Math II
Conceptual Category:
Functions
Cluster:
Interpret expressions for functions in terms of the situation they model.
Standard:
Apply quadratic functions to physical problems, such as the motion of an object under the force of gravity. CA *
Interpret expressions for functions in terms of the situation they model.
Standard:
Apply quadratic functions to physical problems, such as the motion of an object under the force of gravity. CA *
Standard Identifier: F-TF.8
Grade Range:
8–12
Domain:
Trigonometric Functions
Discipline:
Math II
Conceptual Category:
Functions
Cluster:
Prove and apply trigonometric identities.
Standard:
Prove the Pythagorean identity sin^2(θ ) + cos^2(θ ) = 1 and use it to find sin(θ ), cos(θ ), or tan(θ ) given sin(θ ), cos(θ ), or tan(θ ) and the quadrant of the angle.
Prove and apply trigonometric identities.
Standard:
Prove the Pythagorean identity sin^2(θ ) + cos^2(θ ) = 1 and use it to find sin(θ ), cos(θ ), or tan(θ ) given sin(θ ), cos(θ ), or tan(θ ) and the quadrant of the angle.
Standard Identifier: G-MG.1
Grade Range:
8–12
Domain:
Modeling with Geometry
Discipline:
Geometry
Conceptual Category:
Geometry
Cluster:
Apply geometric concepts in modeling situations.
Standard:
Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder). *
Apply geometric concepts in modeling situations.
Standard:
Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder). *
Standard Identifier: G-MG.2
Grade Range:
8–12
Domain:
Modeling with Geometry
Discipline:
Geometry
Conceptual Category:
Geometry
Cluster:
Apply geometric concepts in modeling situations.
Standard:
Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot). *
Apply geometric concepts in modeling situations.
Standard:
Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot). *
Standard Identifier: G-MG.3
Grade Range:
8–12
Domain:
Modeling with Geometry
Discipline:
Geometry
Conceptual Category:
Geometry
Cluster:
Apply geometric concepts in modeling situations.
Standard:
Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios). *
Apply geometric concepts in modeling situations.
Standard:
Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios). *
Standard Identifier: N-CN.1
Grade Range:
8–12
Domain:
The Complex Number System
Discipline:
Math II
Conceptual Category:
Number and Quantity
Cluster:
Perform arithmetic operations with complex numbers. [i^2 as highest power of i]
Standard:
Know there is a complex number i such that i^2 = −1, and every complex number has the form a + bi with a and b real.
Perform arithmetic operations with complex numbers. [i^2 as highest power of i]
Standard:
Know there is a complex number i such that i^2 = −1, and every complex number has the form a + bi with a and b real.
Showing 41 - 50 of 81 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881