Mathematics Standards
        
            
                
                Remove this criterion from the search
                Congruence
            
        
        
            
                
                Remove this criterion from the search
                Counting and Cardinality
            
        
        
            
                
                Remove this criterion from the search
                Linear, Quadratic, and Exponential Models
            
        
        
            
                
                Remove this criterion from the search
                The Complex Number System
            
        
        
            
                
                Remove this criterion from the search
                The Number System
            
        
            
        Results
        Showing 71 - 80 of 94 Standards
    
        Standard Identifier: G-CO.7
                    Grade Range:
                    
                        8–12
                    
                
            
                        Domain:
                        
                            Congruence
                        
                    
                    
                        Discipline:
                        
                            Geometry
                        
                    
            
                        Conceptual Category:
                        
                            Geometry
                        
                    
            Cluster:
Understand congruence in terms of rigid motions. [Build on rigid motions as a familiar starting point for development of concept of geometric proof.]
Standard:
Use the definition of congruence in terms of rigid motions to show that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent.
                Understand congruence in terms of rigid motions. [Build on rigid motions as a familiar starting point for development of concept of geometric proof.]
Standard:
Use the definition of congruence in terms of rigid motions to show that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent.
Standard Identifier: G-CO.8
                    Grade Range:
                    
                        8–12
                    
                
            
                        Domain:
                        
                            Congruence
                        
                    
                    
                        Discipline:
                        
                            Geometry
                        
                    
            
                        Conceptual Category:
                        
                            Geometry
                        
                    
            Cluster:
Understand congruence in terms of rigid motions. [Build on rigid motions as a familiar starting point for development of concept of geometric proof.]
Standard:
Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow from the definition of congruence in terms of rigid motions.
                Understand congruence in terms of rigid motions. [Build on rigid motions as a familiar starting point for development of concept of geometric proof.]
Standard:
Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow from the definition of congruence in terms of rigid motions.
Standard Identifier: G-CO.9
                    Grade Range:
                    
                        8–12
                    
                
            
                        Domain:
                        
                            Congruence
                        
                    
                    
                        Discipline:
                        
                            Geometry
                        
                    
            
                        Conceptual Category:
                        
                            Geometry
                        
                    
            Cluster:
Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment’s endpoints.
                Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment’s endpoints.
Standard Identifier: G-CO.9
                    Grade Range:
                    
                        8–12
                    
                
            
                        Domain:
                        
                            Congruence
                        
                    
                    
                        Discipline:
                        
                            Math II
                        
                    
            
                        Conceptual Category:
                        
                            Geometry
                        
                    
            Cluster:
Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment’s endpoints.
                Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment’s endpoints.
Standard Identifier: N-CN.1
                    Grade Range:
                    
                        8–12
                    
                
            
                        Domain:
                        
                            The Complex Number System
                        
                    
                    
                        Discipline:
                        
                            Math II
                        
                    
            
                        Conceptual Category:
                        
                            Number and Quantity
                        
                    
            Cluster:
Perform arithmetic operations with complex numbers. [i^2 as highest power of i]
Standard:
Know there is a complex number i such that i^2 = −1, and every complex number has the form a + bi with a and b real.
                Perform arithmetic operations with complex numbers. [i^2 as highest power of i]
Standard:
Know there is a complex number i such that i^2 = −1, and every complex number has the form a + bi with a and b real.
Standard Identifier: N-CN.2
                    Grade Range:
                    
                        8–12
                    
                
            
                        Domain:
                        
                            The Complex Number System
                        
                    
                    
                        Discipline:
                        
                            Math II
                        
                    
            
                        Conceptual Category:
                        
                            Number and Quantity
                        
                    
            Cluster:
Perform arithmetic operations with complex numbers. [i^2 as highest power of i]
Standard:
Use the relation i^2 = −1 and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers.
                Perform arithmetic operations with complex numbers. [i^2 as highest power of i]
Standard:
Use the relation i^2 = −1 and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers.
Standard Identifier: N-CN.7
                    Grade Range:
                    
                        8–12
                    
                
            
                        Domain:
                        
                            The Complex Number System
                        
                    
                    
                        Discipline:
                        
                            Math II
                        
                    
            
                        Conceptual Category:
                        
                            Number and Quantity
                        
                    
            Cluster:
Use complex numbers in polynomial identities and equations. [Quadratics with real coefficients]
Standard:
Solve quadratic equations with real coefficients that have complex solutions.
                Use complex numbers in polynomial identities and equations. [Quadratics with real coefficients]
Standard:
Solve quadratic equations with real coefficients that have complex solutions.
Standard Identifier: N-CN.8
                    Grade Range:
                    
                        8–12
                    
                
            
                        Domain:
                        
                            The Complex Number System
                        
                    
                    
                        Discipline:
                        
                            Math II
                        
                    
            
                        Conceptual Category:
                        
                            Number and Quantity
                        
                    
            Cluster:
Use complex numbers in polynomial identities and equations. [Quadratics with real coefficients]
Standard:
(+) Extend polynomial identities to the complex numbers. For example, rewrite x^2 + 4 as (x + 2i)(x – 2i).
                Use complex numbers in polynomial identities and equations. [Quadratics with real coefficients]
Standard:
(+) Extend polynomial identities to the complex numbers. For example, rewrite x^2 + 4 as (x + 2i)(x – 2i).
Standard Identifier: N-CN.9
                    Grade Range:
                    
                        8–12
                    
                
            
                        Domain:
                        
                            The Complex Number System
                        
                    
                    
                        Discipline:
                        
                            Math II
                        
                    
            
                        Conceptual Category:
                        
                            Number and Quantity
                        
                    
            Cluster:
Use complex numbers in polynomial identities and equations. [Quadratics with real coefficients]
Standard:
(+) Know the Fundamental Theorem of Algebra; show that it is true for quadratic polynomials.
                Use complex numbers in polynomial identities and equations. [Quadratics with real coefficients]
Standard:
(+) Know the Fundamental Theorem of Algebra; show that it is true for quadratic polynomials.
Standard Identifier: F-LE.4
                    Grade Range:
                    
                        9–12
                    
                
            
                        Domain:
                        
                            Linear, Quadratic, and Exponential Models
                        
                    
                    
                        Discipline:
                        
                            Algebra II
                        
                    
            
                        Conceptual Category:
                        
                            Functions
                        
                    
            Cluster:
Construct and compare linear, quadratic, and exponential models and solve problems.
Standard:
For exponential models, express as a logarithm the solution to ab^ct = d where a, c, and d are numbers and the base b is 2, 10, or e; evaluate the logarithm using technology. * [Logarithms as solutions for exponentials]
                Construct and compare linear, quadratic, and exponential models and solve problems.
Standard:
For exponential models, express as a logarithm the solution to ab^ct = d where a, c, and d are numbers and the base b is 2, 10, or e; evaluate the logarithm using technology. * [Logarithms as solutions for exponentials]
        Showing 71 - 80 of 94 Standards
    
        
                Questions: Curriculum Frameworks and Instructional Resources Division |
                CFIRD@cde.ca.gov | 916-319-0881
            
            
        