Mathematics Standards
Results
Showing 1 - 10 of 19 Standards
Standard Identifier: F-LE.3
Grade Range:
8–12
Domain:
Linear, Quadratic, and Exponential Models
Discipline:
Math II
Conceptual Category:
Functions
Cluster:
Construct and compare linear, quadratic, and exponential models and solve problems. [Include quadratic.]
Standard:
Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function. *
Construct and compare linear, quadratic, and exponential models and solve problems. [Include quadratic.]
Standard:
Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function. *
Standard Identifier: F-LE.6
Grade Range:
8–12
Domain:
Linear, Quadratic, and Exponential Models
Discipline:
Math II
Conceptual Category:
Functions
Cluster:
Interpret expressions for functions in terms of the situation they model.
Standard:
Apply quadratic functions to physical problems, such as the motion of an object under the force of gravity. CA *
Interpret expressions for functions in terms of the situation they model.
Standard:
Apply quadratic functions to physical problems, such as the motion of an object under the force of gravity. CA *
Standard Identifier: G-CO.10
Grade Range:
8–12
Domain:
Congruence
Discipline:
Math II
Conceptual Category:
Geometry
Cluster:
Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point.
Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point.
Standard Identifier: G-CO.11
Grade Range:
8–12
Domain:
Congruence
Discipline:
Math II
Conceptual Category:
Geometry
Cluster:
Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about parallelograms. Theorems include: opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals.
Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about parallelograms. Theorems include: opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals.
Standard Identifier: G-CO.9
Grade Range:
8–12
Domain:
Congruence
Discipline:
Math II
Conceptual Category:
Geometry
Cluster:
Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment’s endpoints.
Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment’s endpoints.
Standard Identifier: S-MD.6
Grade Range:
8–12
Domain:
Using Probability to Make Decisions
Discipline:
Math II
Conceptual Category:
Statistics and Probability
Cluster:
Use probability to evaluate outcomes of decisions. [Introductory; apply counting rules.]
Standard:
(+) Use probabilities to make fair decisions (e.g., drawing by lots, using a random number generator). *
Use probability to evaluate outcomes of decisions. [Introductory; apply counting rules.]
Standard:
(+) Use probabilities to make fair decisions (e.g., drawing by lots, using a random number generator). *
Standard Identifier: S-MD.7
Grade Range:
8–12
Domain:
Using Probability to Make Decisions
Discipline:
Math II
Conceptual Category:
Statistics and Probability
Cluster:
Use probability to evaluate outcomes of decisions. [Introductory; apply counting rules.]
Standard:
(+) Analyze decisions and strategies using probability concepts (e.g., product testing, medical testing, pulling a hockey goalie at the end of a game). *
Use probability to evaluate outcomes of decisions. [Introductory; apply counting rules.]
Standard:
(+) Analyze decisions and strategies using probability concepts (e.g., product testing, medical testing, pulling a hockey goalie at the end of a game). *
Standard Identifier: F-LE.4
Grade Range:
9–12
Domain:
Linear, Quadratic, and Exponential Models
Discipline:
Algebra II
Conceptual Category:
Functions
Cluster:
Construct and compare linear, quadratic, and exponential models and solve problems.
Standard:
For exponential models, express as a logarithm the solution to ab^ct = d where a, c, and d are numbers and the base b is 2, 10, or e; evaluate the logarithm using technology. * [Logarithms as solutions for exponentials]
Construct and compare linear, quadratic, and exponential models and solve problems.
Standard:
For exponential models, express as a logarithm the solution to ab^ct = d where a, c, and d are numbers and the base b is 2, 10, or e; evaluate the logarithm using technology. * [Logarithms as solutions for exponentials]
Standard Identifier: F-LE.4.1
Grade Range:
9–12
Domain:
Linear, Quadratic, and Exponential Models
Discipline:
Algebra II
Conceptual Category:
Functions
Cluster:
Construct and compare linear, quadratic, and exponential models and solve problems.
Standard:
Prove simple laws of logarithms. CA *
Construct and compare linear, quadratic, and exponential models and solve problems.
Standard:
Prove simple laws of logarithms. CA *
Standard Identifier: F-LE.4.2
Grade Range:
9–12
Domain:
Linear, Quadratic, and Exponential Models
Discipline:
Algebra II
Conceptual Category:
Functions
Cluster:
Construct and compare linear, quadratic, and exponential models and solve problems.
Standard:
Use the definition of logarithms to translate between logarithms in any base. CA *
Construct and compare linear, quadratic, and exponential models and solve problems.
Standard:
Use the definition of logarithms to translate between logarithms in any base. CA *
Showing 1 - 10 of 19 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881