Mathematics Standards
Results
Showing 61 - 70 of 83 Standards
Standard Identifier: N-Q.2
Grade Range:
7–12
Domain:
Quantities
Discipline:
Algebra I
Conceptual Category:
Number and Quantity
Cluster:
Reason quantitatively and use units to solve problems. [Foundation for work with expressions, equations and functions]
Standard:
Define appropriate quantities for the purpose of descriptive modeling.*
Reason quantitatively and use units to solve problems. [Foundation for work with expressions, equations and functions]
Standard:
Define appropriate quantities for the purpose of descriptive modeling.*
Standard Identifier: N-Q.3
Grade Range:
7–12
Domain:
Quantities
Discipline:
Algebra I
Conceptual Category:
Number and Quantity
Cluster:
Reason quantitatively and use units to solve problems. [Foundation for work with expressions, equations and functions]
Standard:
Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.*
Reason quantitatively and use units to solve problems. [Foundation for work with expressions, equations and functions]
Standard:
Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.*
Standard Identifier: N-Q.3
Grade Range:
7–12
Domain:
Quantities
Discipline:
Math I
Conceptual Category:
Number and Quantity
Cluster:
Reason quantitatively and use units to solve problems. [Foundation for work with expressions, equations, and functions]
Standard:
Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. *
Reason quantitatively and use units to solve problems. [Foundation for work with expressions, equations, and functions]
Standard:
Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. *
Standard Identifier: 8.NS.1
Grade:
8
Domain:
The Number System
Cluster:
Know that there are numbers that are not rational, and approximate them by rational numbers.
Standard:
Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion; for rational numbers show that the decimal expansion repeats eventually, and convert a decimal expansion which repeats eventually into a rational number.
Know that there are numbers that are not rational, and approximate them by rational numbers.
Standard:
Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion; for rational numbers show that the decimal expansion repeats eventually, and convert a decimal expansion which repeats eventually into a rational number.
Standard Identifier: 8.NS.2
Grade:
8
Domain:
The Number System
Cluster:
Know that there are numbers that are not rational, and approximate them by rational numbers.
Standard:
Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions (e.g.,π^2). For example, by truncating the decimal expansion of √2, show that √2 is between 1 and 2, then between 1.4 and 1.5, and explain how to continue on to get better approximations.
Know that there are numbers that are not rational, and approximate them by rational numbers.
Standard:
Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions (e.g.,π^2). For example, by truncating the decimal expansion of √2, show that √2 is between 1 and 2, then between 1.4 and 1.5, and explain how to continue on to get better approximations.
Standard Identifier: S-IC.1
Grade Range:
9–12
Domain:
Making Inferences and Justifying Conclusions
Discipline:
Math III
Conceptual Category:
Statistics and Probability
Cluster:
Understand and evaluate random processes underlying statistical experiments.
Standard:
Understand statistics as a process for making inferences about population parameters based on a random sample from that population. *
Understand and evaluate random processes underlying statistical experiments.
Standard:
Understand statistics as a process for making inferences about population parameters based on a random sample from that population. *
Standard Identifier: S-IC.1
Grade Range:
9–12
Domain:
Making Inferences and Justifying Conclusions
Discipline:
Algebra II
Conceptual Category:
Statistics and Probability
Cluster:
Understand and evaluate random processes underlying statistical experiments.
Standard:
Understand statistics as a process for making inferences about population parameters based on a random sample from that population. *
Understand and evaluate random processes underlying statistical experiments.
Standard:
Understand statistics as a process for making inferences about population parameters based on a random sample from that population. *
Standard Identifier: S-IC.2
Grade Range:
9–12
Domain:
Making Inferences and Justifying Conclusions
Discipline:
Algebra II
Conceptual Category:
Statistics and Probability
Cluster:
Understand and evaluate random processes underlying statistical experiments.
Standard:
Decide if a specified model is consistent with results from a given data-generating process, e.g., using simulation. For example, a model says a spinning coin falls heads up with probability 0.5. Would a result of 5 tails in a row cause you to question the model? *
Understand and evaluate random processes underlying statistical experiments.
Standard:
Decide if a specified model is consistent with results from a given data-generating process, e.g., using simulation. For example, a model says a spinning coin falls heads up with probability 0.5. Would a result of 5 tails in a row cause you to question the model? *
Standard Identifier: S-IC.2
Grade Range:
9–12
Domain:
Making Inferences and Justifying Conclusions
Discipline:
Math III
Conceptual Category:
Statistics and Probability
Cluster:
Understand and evaluate random processes underlying statistical experiments.
Standard:
Decide if a specified model is consistent with results from a given data-generating process, e.g., using simulation. For example, a model says a spinning coin falls heads up with probability 0.5. Would a result of 5 tails in a row cause you to question the model? *
Understand and evaluate random processes underlying statistical experiments.
Standard:
Decide if a specified model is consistent with results from a given data-generating process, e.g., using simulation. For example, a model says a spinning coin falls heads up with probability 0.5. Would a result of 5 tails in a row cause you to question the model? *
Standard Identifier: S-IC.3
Grade Range:
9–12
Domain:
Making Inferences and Justifying Conclusions
Discipline:
Math III
Conceptual Category:
Statistics and Probability
Cluster:
Make inferences and justify conclusions from sample surveys, experiments, and observational studies.
Standard:
Recognize the purposes of and differences among sample surveys, experiments, and observational studies; explain how randomization relates to each. *
Make inferences and justify conclusions from sample surveys, experiments, and observational studies.
Standard:
Recognize the purposes of and differences among sample surveys, experiments, and observational studies; explain how randomization relates to each. *
Showing 61 - 70 of 83 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881