Mathematics Standards
Remove this criterion from the search
Conditional Probability and the Rules of Probability
Remove this criterion from the search
Congruence
Remove this criterion from the search
Making Inferences and Justifying Conclusions
Remove this criterion from the search
Seeing Structure in Expressions
Remove this criterion from the search
The Real Number System
Results
Showing 21 - 30 of 99 Standards
Standard Identifier: N-RN.3
Grade Range:
7–12
Domain:
The Real Number System
Discipline:
Algebra I
Conceptual Category:
Number and Quantity
Cluster:
Use properties of rational and irrational numbers.
Standard:
Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.
Use properties of rational and irrational numbers.
Standard:
Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.
Standard Identifier: A-SSE.1.a
Grade Range:
8–12
Domain:
Seeing Structure in Expressions
Discipline:
Math II
Conceptual Category:
Algebra
Cluster:
Interpret the structure of expressions. [Quadratic and exponential]
Standard:
Interpret expressions that represent a quantity in terms of its context. * Interpret parts of an expression, such as terms, factors, and coefficients. *
Interpret the structure of expressions. [Quadratic and exponential]
Standard:
Interpret expressions that represent a quantity in terms of its context. * Interpret parts of an expression, such as terms, factors, and coefficients. *
Standard Identifier: A-SSE.1.b
Grade Range:
8–12
Domain:
Seeing Structure in Expressions
Discipline:
Math II
Conceptual Category:
Algebra
Cluster:
Interpret the structure of expressions. [Quadratic and exponential]
Standard:
Interpret expressions that represent a quantity in terms of its context. * Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret P(1 + r)^n as the product of P and a factor not depending on P. *
Interpret the structure of expressions. [Quadratic and exponential]
Standard:
Interpret expressions that represent a quantity in terms of its context. * Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret P(1 + r)^n as the product of P and a factor not depending on P. *
Standard Identifier: A-SSE.2
Grade Range:
8–12
Domain:
Seeing Structure in Expressions
Discipline:
Math II
Conceptual Category:
Algebra
Cluster:
Interpret the structure of expressions. [Quadratic and exponential]
Standard:
Use the structure of an expression to identify ways to rewrite it. For example, see x^4 – y^4 as (x^2)^2 – (y^2)^2, thus recognizing it as a difference of squares that can be factored as (x^2 – y^2)(x^2 + y^2).
Interpret the structure of expressions. [Quadratic and exponential]
Standard:
Use the structure of an expression to identify ways to rewrite it. For example, see x^4 – y^4 as (x^2)^2 – (y^2)^2, thus recognizing it as a difference of squares that can be factored as (x^2 – y^2)(x^2 + y^2).
Standard Identifier: A-SSE.3.a
Grade Range:
8–12
Domain:
Seeing Structure in Expressions
Discipline:
Math II
Conceptual Category:
Algebra
Cluster:
Write expressions in equivalent forms to solve problems. [Quadratic and exponential]
Standard:
Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.* Factor a quadratic expression to reveal the zeros of the function it defines.*
Write expressions in equivalent forms to solve problems. [Quadratic and exponential]
Standard:
Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.* Factor a quadratic expression to reveal the zeros of the function it defines.*
Standard Identifier: A-SSE.3.b
Grade Range:
8–12
Domain:
Seeing Structure in Expressions
Discipline:
Math II
Conceptual Category:
Algebra
Cluster:
Write expressions in equivalent forms to solve problems. [Quadratic and exponential]
Standard:
Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.* Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines.*
Write expressions in equivalent forms to solve problems. [Quadratic and exponential]
Standard:
Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.* Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines.*
Standard Identifier: A-SSE.3.c
Grade Range:
8–12
Domain:
Seeing Structure in Expressions
Discipline:
Math II
Conceptual Category:
Algebra
Cluster:
Write expressions in equivalent forms to solve problems. [Quadratic and exponential]
Standard:
Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.* Use the properties of exponents to transform expressions for exponential functions. For example, the expression 1.15^t can be rewritten as (1.15^1/12)^12t ≈ 1.012^12t to reveal the approximate equivalent monthly interest rate if the annual rate is 15%.*
Write expressions in equivalent forms to solve problems. [Quadratic and exponential]
Standard:
Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.* Use the properties of exponents to transform expressions for exponential functions. For example, the expression 1.15^t can be rewritten as (1.15^1/12)^12t ≈ 1.012^12t to reveal the approximate equivalent monthly interest rate if the annual rate is 15%.*
Standard Identifier: G-CO.1
Grade Range:
8–12
Domain:
Congruence
Discipline:
Geometry
Conceptual Category:
Geometry
Cluster:
Experiment with transformations in the plane.
Standard:
Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc.
Experiment with transformations in the plane.
Standard:
Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc.
Standard Identifier: G-CO.10
Grade Range:
8–12
Domain:
Congruence
Discipline:
Geometry
Conceptual Category:
Geometry
Cluster:
Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point.
Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point.
Standard Identifier: G-CO.10
Grade Range:
8–12
Domain:
Congruence
Discipline:
Math II
Conceptual Category:
Geometry
Cluster:
Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point.
Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point.
Showing 21 - 30 of 99 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881