Mathematics Standards
Results
Showing 1 - 10 of 16 Standards
Standard Identifier: N-Q.1
Grade Range:
7–12
Domain:
Quantities
Discipline:
Algebra I
Conceptual Category:
Number and Quantity
Cluster:
Reason quantitatively and use units to solve problems. [Foundation for work with expressions, equations and functions]
Standard:
Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.*
Reason quantitatively and use units to solve problems. [Foundation for work with expressions, equations and functions]
Standard:
Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.*
Standard Identifier: N-Q.2
Grade Range:
7–12
Domain:
Quantities
Discipline:
Algebra I
Conceptual Category:
Number and Quantity
Cluster:
Reason quantitatively and use units to solve problems. [Foundation for work with expressions, equations and functions]
Standard:
Define appropriate quantities for the purpose of descriptive modeling.*
Reason quantitatively and use units to solve problems. [Foundation for work with expressions, equations and functions]
Standard:
Define appropriate quantities for the purpose of descriptive modeling.*
Standard Identifier: N-Q.3
Grade Range:
7–12
Domain:
Quantities
Discipline:
Algebra I
Conceptual Category:
Number and Quantity
Cluster:
Reason quantitatively and use units to solve problems. [Foundation for work with expressions, equations and functions]
Standard:
Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.*
Reason quantitatively and use units to solve problems. [Foundation for work with expressions, equations and functions]
Standard:
Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.*
Standard Identifier: G-CO.10
Grade Range:
8–12
Domain:
Congruence
Discipline:
Math II
Conceptual Category:
Geometry
Cluster:
Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point.
Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point.
Standard Identifier: G-CO.11
Grade Range:
8–12
Domain:
Congruence
Discipline:
Math II
Conceptual Category:
Geometry
Cluster:
Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about parallelograms. Theorems include: opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals.
Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about parallelograms. Theorems include: opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals.
Standard Identifier: G-CO.9
Grade Range:
8–12
Domain:
Congruence
Discipline:
Math II
Conceptual Category:
Geometry
Cluster:
Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment’s endpoints.
Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment’s endpoints.
Standard Identifier: G-SRT.1.a
Grade Range:
8–12
Domain:
Similarity, Right Triangles, and Trigonometry
Discipline:
Math II
Conceptual Category:
Geometry
Cluster:
Understand similarity in terms of similarity transformations.
Standard:
Verify experimentally the properties of dilations given by a center and a scale factor: A dilation takes a line not passing through the center of the dilation to a parallel line, and leaves a line passing through the center unchanged.
Understand similarity in terms of similarity transformations.
Standard:
Verify experimentally the properties of dilations given by a center and a scale factor: A dilation takes a line not passing through the center of the dilation to a parallel line, and leaves a line passing through the center unchanged.
Standard Identifier: G-SRT.1.b
Grade Range:
8–12
Domain:
Similarity, Right Triangles, and Trigonometry
Discipline:
Math II
Conceptual Category:
Geometry
Cluster:
Understand similarity in terms of similarity transformations.
Standard:
Verify experimentally the properties of dilations given by a center and a scale factor: The dilation of a line segment is longer or shorter in the ratio given by the scale factor.
Understand similarity in terms of similarity transformations.
Standard:
Verify experimentally the properties of dilations given by a center and a scale factor: The dilation of a line segment is longer or shorter in the ratio given by the scale factor.
Standard Identifier: G-SRT.2
Grade Range:
8–12
Domain:
Similarity, Right Triangles, and Trigonometry
Discipline:
Math II
Conceptual Category:
Geometry
Cluster:
Understand similarity in terms of similarity transformations.
Standard:
Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar; explain using similarity transformations the meaning of similarity for triangles as the equality of all corresponding pairs of angles and the proportionality of all corresponding pairs of sides.
Understand similarity in terms of similarity transformations.
Standard:
Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar; explain using similarity transformations the meaning of similarity for triangles as the equality of all corresponding pairs of angles and the proportionality of all corresponding pairs of sides.
Standard Identifier: G-SRT.3
Grade Range:
8–12
Domain:
Similarity, Right Triangles, and Trigonometry
Discipline:
Math II
Conceptual Category:
Geometry
Cluster:
Understand similarity in terms of similarity transformations.
Standard:
Use the properties of similarity transformations to establish the Angle-Angle (AA) criterion for two triangles to be similar.
Understand similarity in terms of similarity transformations.
Standard:
Use the properties of similarity transformations to establish the Angle-Angle (AA) criterion for two triangles to be similar.
Showing 1 - 10 of 16 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881