Skip to main content
California Department of Education Logo

Mathematics Standards




Results


Showing 51 - 60 of 70 Standards

Standard Identifier: 8.F.4

Grade: 8
Domain: Functions

Cluster:
Use functions to model relationships between quantities.

Standard:
Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values.

Standard Identifier: 8.F.5

Grade: 8
Domain: Functions

Cluster:
Use functions to model relationships between quantities.

Standard:
Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally.

Standard Identifier: A-APR.1

Grade Range: 8–12
Domain: Arithmetic with Polynomials and Rational Expressions
Discipline: Math II
Conceptual Category: Algebra

Cluster:
Perform arithmetic operations on polynomials. [Polynomials that simplify to quadratics]

Standard:
Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.

Standard Identifier: N-RN.1

Grade Range: 8–12
Domain: The Real Number System
Discipline: Math II
Conceptual Category: Number and Quantity

Cluster:
Extend the properties of exponents to rational exponents.

Standard:
Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define 5^1/3 to be the cube root of 5 because we want (5^1/3)^3 = 5(^1/3)^3 to hold, so (5^1/3)^3 must equal 5.

Standard Identifier: N-RN.2

Grade Range: 8–12
Domain: The Real Number System
Discipline: Math II
Conceptual Category: Number and Quantity

Cluster:
Extend the properties of exponents to rational exponents.

Standard:
Rewrite expressions involving radicals and rational exponents using the properties of exponents.

Standard Identifier: N-RN.3

Grade Range: 8–12
Domain: The Real Number System
Discipline: Math II
Conceptual Category: Number and Quantity

Cluster:
Use properties of rational and irrational numbers.

Standard:
Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.

Standard Identifier: A-APR.1

Grade Range: 9–12
Domain: Arithmetic with Polynomials and Rational Expressions
Discipline: Algebra II
Conceptual Category: Algebra

Cluster:
Perform arithmetic operations on polynomials. [Beyond quadratic]

Standard:
Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.

Standard Identifier: A-APR.1

Grade Range: 9–12
Domain: Arithmetic with Polynomials and Rational Expressions
Discipline: Math III
Conceptual Category: Algebra

Cluster:
Perform arithmetic operations on polynomials. [Beyond quadratic]

Standard:
Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.

Standard Identifier: A-APR.2

Grade Range: 9–12
Domain: Arithmetic with Polynomials and Rational Expressions
Discipline: Math III
Conceptual Category: Algebra

Cluster:
Understand the relationship between zeros and factors of polynomials.

Standard:
Know and apply the Remainder Theorem: For a polynomial p(x) and a number a, the remainder on division by x – a is p(a), so p(a) = 0 if and only if (x – a) is a factor of p(x).

Standard Identifier: A-APR.2

Grade Range: 9–12
Domain: Arithmetic with Polynomials and Rational Expressions
Discipline: Algebra II
Conceptual Category: Algebra

Cluster:
Understand the relationship between zeros and factors of polynomials.

Standard:
Know and apply the Remainder Theorem: For a polynomial p(x) and a number a, the remainder on division by x – a is p(a), so p(a) = 0 if and only if (x – a) is a factor of p(x).

Showing 51 - 60 of 70 Standards


Questions: Curriculum Frameworks and Instructional Resources Division | CFIRD@cde.ca.gov | 916-319-0881