Mathematics Standards
Results
Showing 51 - 60 of 82 Standards
Standard Identifier: G-CO.3
Grade Range:
7–12
Domain:
Congruence
Discipline:
Math I
Conceptual Category:
Geometry
Cluster:
Experiment with transformations in the plane.
Standard:
Given a rectangle, parallelogram, trapezoid, or regular polygon, describe the rotations and reflections that carry it onto itself.
Experiment with transformations in the plane.
Standard:
Given a rectangle, parallelogram, trapezoid, or regular polygon, describe the rotations and reflections that carry it onto itself.
Standard Identifier: G-CO.4
Grade Range:
7–12
Domain:
Congruence
Discipline:
Math I
Conceptual Category:
Geometry
Cluster:
Experiment with transformations in the plane.
Standard:
Develop definitions of rotations, reflections, and translations in terms of angles, circles, perpendicular lines, parallel lines, and line segments.
Experiment with transformations in the plane.
Standard:
Develop definitions of rotations, reflections, and translations in terms of angles, circles, perpendicular lines, parallel lines, and line segments.
Standard Identifier: G-CO.5
Grade Range:
7–12
Domain:
Congruence
Discipline:
Math I
Conceptual Category:
Geometry
Cluster:
Experiment with transformations in the plane.
Standard:
Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using, e.g., graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another.
Experiment with transformations in the plane.
Standard:
Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using, e.g., graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another.
Standard Identifier: G-CO.6
Grade Range:
7–12
Domain:
Congruence
Discipline:
Math I
Conceptual Category:
Geometry
Cluster:
Understand congruence in terms of rigid motions. [Build on rigid motions as a familiar starting point for development of concept of geometric proof.]
Standard:
Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure; given two figures, use the definition of congruence in terms of rigid motions to decide if they are congruent.
Understand congruence in terms of rigid motions. [Build on rigid motions as a familiar starting point for development of concept of geometric proof.]
Standard:
Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure; given two figures, use the definition of congruence in terms of rigid motions to decide if they are congruent.
Standard Identifier: G-CO.7
Grade Range:
7–12
Domain:
Congruence
Discipline:
Math I
Conceptual Category:
Geometry
Cluster:
Understand congruence in terms of rigid motions. [Build on rigid motions as a familiar starting point for development of concept of geometric proof.]
Standard:
Use the definition of congruence in terms of rigid motions to show that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent.
Understand congruence in terms of rigid motions. [Build on rigid motions as a familiar starting point for development of concept of geometric proof.]
Standard:
Use the definition of congruence in terms of rigid motions to show that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent.
Standard Identifier: G-CO.8
Grade Range:
7–12
Domain:
Congruence
Discipline:
Math I
Conceptual Category:
Geometry
Cluster:
Understand congruence in terms of rigid motions. [Build on rigid motions as a familiar starting point for development of concept of geometric proof.]
Standard:
Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow from the definition of congruence in terms of rigid motions.
Understand congruence in terms of rigid motions. [Build on rigid motions as a familiar starting point for development of concept of geometric proof.]
Standard:
Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow from the definition of congruence in terms of rigid motions.
Standard Identifier: F-BF.1.a
Grade Range:
8–12
Domain:
Building Functions
Discipline:
Math II
Conceptual Category:
Functions
Cluster:
Build a function that models a relationship between two quantities. [Quadratic and exponential]
Standard:
Write a function that describes a relationship between two quantities. * Determine an explicit expression, a recursive process, or steps for calculation from a context. *
Build a function that models a relationship between two quantities. [Quadratic and exponential]
Standard:
Write a function that describes a relationship between two quantities. * Determine an explicit expression, a recursive process, or steps for calculation from a context. *
Standard Identifier: F-BF.1.b
Grade Range:
8–12
Domain:
Building Functions
Discipline:
Math II
Conceptual Category:
Functions
Cluster:
Build a function that models a relationship between two quantities. [Quadratic and exponential]
Standard:
Write a function that describes a relationship between two quantities. * Combine standard function types using arithmetic operations. *
Build a function that models a relationship between two quantities. [Quadratic and exponential]
Standard:
Write a function that describes a relationship between two quantities. * Combine standard function types using arithmetic operations. *
Standard Identifier: F-BF.3
Grade Range:
8–12
Domain:
Building Functions
Discipline:
Math II
Conceptual Category:
Functions
Cluster:
Build new functions from existing functions. [Quadratic, absolute value]
Standard:
Identify the effect on the graph of replacing f(x) by f(x) + k, kf(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.
Build new functions from existing functions. [Quadratic, absolute value]
Standard:
Identify the effect on the graph of replacing f(x) by f(x) + k, kf(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.
Standard Identifier: F-BF.4.a
Grade Range:
8–12
Domain:
Building Functions
Discipline:
Math II
Conceptual Category:
Functions
Cluster:
Build new functions from existing functions. [Quadratic, absolute value]
Standard:
Find inverse functions. Solve an equation of the form f(x) = c for a simple function f that has an inverse and write an expression for the inverse. For example, f(x) =2x^3.
Build new functions from existing functions. [Quadratic, absolute value]
Standard:
Find inverse functions. Solve an equation of the form f(x) = c for a simple function f that has an inverse and write an expression for the inverse. For example, f(x) =2x^3.
Showing 51 - 60 of 82 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881