Mathematics Standards
Results
Showing 21 - 30 of 68 Standards
Standard Identifier: F-BF.1.a
Grade Range:
7–12
Domain:
Building Functions
Discipline:
Math I
Conceptual Category:
Functions
Cluster:
Build a function that models a relationship between two quantities. [For F.BF.1, 2, linear and exponential (integer inputs)]
Standard:
Write a function that describes a relationship between two quantities. * Determine an explicit expression, a recursive process, or steps for calculation from a context. *
Build a function that models a relationship between two quantities. [For F.BF.1, 2, linear and exponential (integer inputs)]
Standard:
Write a function that describes a relationship between two quantities. * Determine an explicit expression, a recursive process, or steps for calculation from a context. *
Standard Identifier: F-BF.1.b
Grade Range:
7–12
Domain:
Building Functions
Discipline:
Math I
Conceptual Category:
Functions
Cluster:
Build a function that models a relationship between two quantities. [For F.BF.1, 2, linear and exponential (integer inputs)]
Standard:
Write a function that describes a relationship between two quantities. * Combine standard function types using arithmetic operations. For example, build a function that models the temperature of a cooling body by adding a constant function to a decaying exponential, and relate these functions to the model. *
Build a function that models a relationship between two quantities. [For F.BF.1, 2, linear and exponential (integer inputs)]
Standard:
Write a function that describes a relationship between two quantities. * Combine standard function types using arithmetic operations. For example, build a function that models the temperature of a cooling body by adding a constant function to a decaying exponential, and relate these functions to the model. *
Standard Identifier: F-BF.1.b
Grade Range:
7–12
Domain:
Building Functions
Discipline:
Algebra I
Conceptual Category:
Functions
Cluster:
Build a function that models a relationship between two quantities. [For F.BF.1, 2, linear, exponential, and quadratic]
Standard:
Write a function that describes a relationship between two quantities. * Combine standard function types using arithmetic operations. For example, build a function that models the temperature of a cooling body by adding a constant function to a decaying exponential, and relate these functions to the model. *
Build a function that models a relationship between two quantities. [For F.BF.1, 2, linear, exponential, and quadratic]
Standard:
Write a function that describes a relationship between two quantities. * Combine standard function types using arithmetic operations. For example, build a function that models the temperature of a cooling body by adding a constant function to a decaying exponential, and relate these functions to the model. *
Standard Identifier: F-BF.2
Grade Range:
7–12
Domain:
Building Functions
Discipline:
Algebra I
Conceptual Category:
Functions
Cluster:
Build a function that models a relationship between two quantities. [For F.BF.1, 2, linear, exponential, and quadratic]
Standard:
Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms. *
Build a function that models a relationship between two quantities. [For F.BF.1, 2, linear, exponential, and quadratic]
Standard:
Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms. *
Standard Identifier: F-BF.2
Grade Range:
7–12
Domain:
Building Functions
Discipline:
Math I
Conceptual Category:
Functions
Cluster:
Build a function that models a relationship between two quantities. [For F.BF.1, 2, linear and exponential (integer inputs)]
Standard:
Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms. *
Build a function that models a relationship between two quantities. [For F.BF.1, 2, linear and exponential (integer inputs)]
Standard:
Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms. *
Standard Identifier: F-BF.3
Grade Range:
7–12
Domain:
Building Functions
Discipline:
Math I
Conceptual Category:
Functions
Cluster:
Build new functions from existing functions. [Linear and exponential; focus on vertical translations for exponential.]
Standard:
Identify the effect on the graph of replacing f(x) by f(x) + k, kf(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.
Build new functions from existing functions. [Linear and exponential; focus on vertical translations for exponential.]
Standard:
Identify the effect on the graph of replacing f(x) by f(x) + k, kf(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.
Standard Identifier: F-BF.3
Grade Range:
7–12
Domain:
Building Functions
Discipline:
Algebra I
Conceptual Category:
Functions
Cluster:
Build new functions from existing functions. [Linear, exponential, quadratic, and absolute value; for F.BF.4a, linear only]
Standard:
Identify the effect on the graph of replacing f(x) by f(x) + k, kf(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.
Build new functions from existing functions. [Linear, exponential, quadratic, and absolute value; for F.BF.4a, linear only]
Standard:
Identify the effect on the graph of replacing f(x) by f(x) + k, kf(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.
Standard Identifier: F-BF.4.a
Grade Range:
7–12
Domain:
Building Functions
Discipline:
Algebra I
Conceptual Category:
Functions
Cluster:
Build new functions from existing functions. [Linear, exponential, quadratic, and absolute value; for F.BF.4a, linear only]
Standard:
Find inverse functions. Solve an equation of the form f(x) = c for a simple function f that has an inverse and write an expression for the inverse.
Build new functions from existing functions. [Linear, exponential, quadratic, and absolute value; for F.BF.4a, linear only]
Standard:
Find inverse functions. Solve an equation of the form f(x) = c for a simple function f that has an inverse and write an expression for the inverse.
Standard Identifier: 8.SP.1
Grade:
8
Domain:
Statistics and Probability
Cluster:
Investigate patterns of association in bivariate data.
Standard:
Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association.
Investigate patterns of association in bivariate data.
Standard:
Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association.
Standard Identifier: 8.SP.2
Grade:
8
Domain:
Statistics and Probability
Cluster:
Investigate patterns of association in bivariate data.
Standard:
Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line.
Investigate patterns of association in bivariate data.
Standard:
Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line.
Showing 21 - 30 of 68 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881