Mathematics Standards
Results
Showing 21 - 30 of 31 Standards
Standard Identifier: F-BF.3
Grade Range:
9–12
Domain:
Building Functions
Discipline:
Math III
Conceptual Category:
Functions
Cluster:
Build new functions from existing functions. [Include simple radical, rational, and exponential functions; emphasize common effect of each transformation across function types.]
Standard:
Identify the effect on the graph of replacing f(x) by f(x) + k, kf(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.
Build new functions from existing functions. [Include simple radical, rational, and exponential functions; emphasize common effect of each transformation across function types.]
Standard:
Identify the effect on the graph of replacing f(x) by f(x) + k, kf(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.
Standard Identifier: F-BF.3
Grade Range:
9–12
Domain:
Building Functions
Discipline:
Algebra II
Conceptual Category:
Functions
Cluster:
Build new functions from existing functions. [Include simple radical, rational, and exponential functions; emphasize common effect of each transformation across function types.]
Standard:
Identify the effect on the graph of replacing f(x) by f(x) + k, kf(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.
Build new functions from existing functions. [Include simple radical, rational, and exponential functions; emphasize common effect of each transformation across function types.]
Standard:
Identify the effect on the graph of replacing f(x) by f(x) + k, kf(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.
Standard Identifier: F-BF.4.a
Grade Range:
9–12
Domain:
Building Functions
Discipline:
Algebra II
Conceptual Category:
Functions
Cluster:
Build new functions from existing functions. [Include simple radical, rational, and exponential functions; emphasize common effect of each transformation across function types.]
Standard:
Find inverse functions. Solve an equation of the form f(x) = c for a simple function f that has an inverse and write an expression for the inverse. For example, f(x) =2x^3 or f(x) = (x + 1)/(x − 1) for x ≠ 1.
Build new functions from existing functions. [Include simple radical, rational, and exponential functions; emphasize common effect of each transformation across function types.]
Standard:
Find inverse functions. Solve an equation of the form f(x) = c for a simple function f that has an inverse and write an expression for the inverse. For example, f(x) =2x^3 or f(x) = (x + 1)/(x − 1) for x ≠ 1.
Standard Identifier: F-BF.4.a
Grade Range:
9–12
Domain:
Building Functions
Discipline:
Math III
Conceptual Category:
Functions
Cluster:
Build new functions from existing functions. [Include simple radical, rational, and exponential functions; emphasize common effect of each transformation across function types.]
Standard:
Find inverse functions. Solve an equation of the form f(x) = c for a simple function f that has an inverse and write an expression for the inverse. For example, f(x) =2x^3 or f(x) = (x + 1)/(x − 1) for x ≠ 1.
Build new functions from existing functions. [Include simple radical, rational, and exponential functions; emphasize common effect of each transformation across function types.]
Standard:
Find inverse functions. Solve an equation of the form f(x) = c for a simple function f that has an inverse and write an expression for the inverse. For example, f(x) =2x^3 or f(x) = (x + 1)/(x − 1) for x ≠ 1.
Standard Identifier: N-CN.1
Grade Range:
9–12
Domain:
The Complex Number System
Discipline:
Algebra II
Conceptual Category:
Number and Quantity
Cluster:
Perform arithmetic operations with complex numbers.
Standard:
Know there is a complex number i such that i^2 = −1, and every complex number has the form a + bi with a and b real.
Perform arithmetic operations with complex numbers.
Standard:
Know there is a complex number i such that i^2 = −1, and every complex number has the form a + bi with a and b real.
Standard Identifier: N-CN.2
Grade Range:
9–12
Domain:
The Complex Number System
Discipline:
Algebra II
Conceptual Category:
Number and Quantity
Cluster:
Perform arithmetic operations with complex numbers.
Standard:
Use the relation i^2 = −1 and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers.
Perform arithmetic operations with complex numbers.
Standard:
Use the relation i^2 = −1 and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers.
Standard Identifier: N-CN.7
Grade Range:
9–12
Domain:
The Complex Number System
Discipline:
Algebra II
Conceptual Category:
Number and Quantity
Cluster:
Use complex numbers in polynomial identities and equations. [Polynomials with real coefficients]
Standard:
Solve quadratic equations with real coefficients that have complex solutions.
Use complex numbers in polynomial identities and equations. [Polynomials with real coefficients]
Standard:
Solve quadratic equations with real coefficients that have complex solutions.
Standard Identifier: N-CN.8
Grade Range:
9–12
Domain:
The Complex Number System
Discipline:
Algebra II
Conceptual Category:
Number and Quantity
Cluster:
Use complex numbers in polynomial identities and equations. [Polynomials with real coefficients]
Standard:
(+) Extend polynomial identities to the complex numbers. For example, rewrite x^2 + 4 as (x + 2i)(x – 2i).
Use complex numbers in polynomial identities and equations. [Polynomials with real coefficients]
Standard:
(+) Extend polynomial identities to the complex numbers. For example, rewrite x^2 + 4 as (x + 2i)(x – 2i).
Standard Identifier: N-CN.8
Grade Range:
9–12
Domain:
The Complex Number System
Discipline:
Math III
Conceptual Category:
Number and Quantity
Cluster:
Use complex numbers in polynomial identities and equations. [Polynomials with real coefficients; apply N.CN.9 to higher degree polynomials.]
Standard:
(+) Extend polynomial identities to the complex numbers.
Use complex numbers in polynomial identities and equations. [Polynomials with real coefficients; apply N.CN.9 to higher degree polynomials.]
Standard:
(+) Extend polynomial identities to the complex numbers.
Standard Identifier: N-CN.9
Grade Range:
9–12
Domain:
The Complex Number System
Discipline:
Math III
Conceptual Category:
Number and Quantity
Cluster:
Use complex numbers in polynomial identities and equations. [Polynomials with real coefficients; apply N.CN.9 to higher degree polynomials.]
Standard:
(+) Know the Fundamental Theorem of Algebra; show that it is true for quadratic polynomials.
Use complex numbers in polynomial identities and equations. [Polynomials with real coefficients; apply N.CN.9 to higher degree polynomials.]
Standard:
(+) Know the Fundamental Theorem of Algebra; show that it is true for quadratic polynomials.
Showing 21 - 30 of 31 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881