Mathematics Standards
Remove this criterion from the search
Arithmetic with Polynomials and Rational Expressions
Remove this criterion from the search
Expressing Geometric Properties with Equations
Remove this criterion from the search
Expressions and Equations
Remove this criterion from the search
Number and Operations—Fractions
Remove this criterion from the search
The Complex Number System
Results
Showing 81 - 90 of 100 Standards
Standard Identifier: A-APR.2
Grade Range:
9–12
Domain:
Arithmetic with Polynomials and Rational Expressions
Discipline:
Math III
Conceptual Category:
Algebra
Cluster:
Understand the relationship between zeros and factors of polynomials.
Standard:
Know and apply the Remainder Theorem: For a polynomial p(x) and a number a, the remainder on division by x – a is p(a), so p(a) = 0 if and only if (x – a) is a factor of p(x).
Understand the relationship between zeros and factors of polynomials.
Standard:
Know and apply the Remainder Theorem: For a polynomial p(x) and a number a, the remainder on division by x – a is p(a), so p(a) = 0 if and only if (x – a) is a factor of p(x).
Standard Identifier: A-APR.3
Grade Range:
9–12
Domain:
Arithmetic with Polynomials and Rational Expressions
Discipline:
Math III
Conceptual Category:
Algebra
Cluster:
Understand the relationship between zeros and factors of polynomials.
Standard:
Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial.
Understand the relationship between zeros and factors of polynomials.
Standard:
Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial.
Standard Identifier: A-APR.3
Grade Range:
9–12
Domain:
Arithmetic with Polynomials and Rational Expressions
Discipline:
Algebra II
Conceptual Category:
Algebra
Cluster:
Understand the relationship between zeros and factors of polynomials.
Standard:
Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial.
Understand the relationship between zeros and factors of polynomials.
Standard:
Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial.
Standard Identifier: A-APR.4
Grade Range:
9–12
Domain:
Arithmetic with Polynomials and Rational Expressions
Discipline:
Algebra II
Conceptual Category:
Algebra
Cluster:
Use polynomial identities to solve problems.
Standard:
Prove polynomial identities and use them to describe numerical relationships. For example, the polynomial identity (x^2 + y^2)2= (x^2 – y^2)^2 + (2xy)^2 can be used to generate Pythagorean triples.
Use polynomial identities to solve problems.
Standard:
Prove polynomial identities and use them to describe numerical relationships. For example, the polynomial identity (x^2 + y^2)2= (x^2 – y^2)^2 + (2xy)^2 can be used to generate Pythagorean triples.
Standard Identifier: A-APR.4
Grade Range:
9–12
Domain:
Arithmetic with Polynomials and Rational Expressions
Discipline:
Math III
Conceptual Category:
Algebra
Cluster:
Use polynomial identities to solve problems.
Standard:
Prove polynomial identities and use them to describe numerical relationships. For example, the polynomial identity (x^2 + y^2)^2= (x^2 – y^2)^2 + (2xy)^2 can be used to generate Pythagorean triples.
Use polynomial identities to solve problems.
Standard:
Prove polynomial identities and use them to describe numerical relationships. For example, the polynomial identity (x^2 + y^2)^2= (x^2 – y^2)^2 + (2xy)^2 can be used to generate Pythagorean triples.
Standard Identifier: A-APR.5
Grade Range:
9–12
Domain:
Arithmetic with Polynomials and Rational Expressions
Discipline:
Math III
Conceptual Category:
Algebra
Cluster:
Use polynomial identities to solve problems.
Standard:
(+) Know and apply the Binomial Theorem for the expansion of (x + y)^n in powers of x and y for a positive integer n, where x and y are any numbers, with coefficients determined for example by Pascal’s Triangle.
Footnote:
The Binomial Theorem can be proved by mathematical induction or by a combinatorial argument.
Use polynomial identities to solve problems.
Standard:
(+) Know and apply the Binomial Theorem for the expansion of (x + y)^n in powers of x and y for a positive integer n, where x and y are any numbers, with coefficients determined for example by Pascal’s Triangle.
Footnote:
The Binomial Theorem can be proved by mathematical induction or by a combinatorial argument.
Standard Identifier: A-APR.5
Grade Range:
9–12
Domain:
Arithmetic with Polynomials and Rational Expressions
Discipline:
Algebra II
Conceptual Category:
Algebra
Cluster:
Use polynomial identities to solve problems.
Standard:
(+) Know and apply the Binomial Theorem for the expansion of (x + y)^n in powers of x and y for a positive integer n, where x and y are any numbers, with coefficients determined for example by Pascal’s Triangle.
Footnote:
The Binomial Theorem can be proved by mathematical induction or by a combinatorial argument.
Use polynomial identities to solve problems.
Standard:
(+) Know and apply the Binomial Theorem for the expansion of (x + y)^n in powers of x and y for a positive integer n, where x and y are any numbers, with coefficients determined for example by Pascal’s Triangle.
Footnote:
The Binomial Theorem can be proved by mathematical induction or by a combinatorial argument.
Standard Identifier: A-APR.6
Grade Range:
9–12
Domain:
Arithmetic with Polynomials and Rational Expressions
Discipline:
Algebra II
Conceptual Category:
Algebra
Cluster:
Rewrite rational expressions. [Linear and quadratic denominators]
Standard:
Rewrite simple rational expressions in different forms; write a(x)/b(x) in the form q(x) + r(x)/b(x), where a(x), b(x), q(x), and r(x) are polynomials with the degree of r(x) less than the degree of b(x), using inspection, long division, or, for the more complicated examples, a computer algebra system.
Rewrite rational expressions. [Linear and quadratic denominators]
Standard:
Rewrite simple rational expressions in different forms; write a(x)/b(x) in the form q(x) + r(x)/b(x), where a(x), b(x), q(x), and r(x) are polynomials with the degree of r(x) less than the degree of b(x), using inspection, long division, or, for the more complicated examples, a computer algebra system.
Standard Identifier: A-APR.6
Grade Range:
9–12
Domain:
Arithmetic with Polynomials and Rational Expressions
Discipline:
Math III
Conceptual Category:
Algebra
Cluster:
Rewrite rational expressions. [Linear and quadratic denominators]
Standard:
Rewrite simple rational expressions in different forms; write a(x)/b(x) in the form q(x) + r(x)/b(x), where a(x), b(x), q(x), and r(x) are polynomials with the degree of r(x) less than the degree of b(x), using inspection, long division, or, for the more complicated examples, a computer algebra system.
Rewrite rational expressions. [Linear and quadratic denominators]
Standard:
Rewrite simple rational expressions in different forms; write a(x)/b(x) in the form q(x) + r(x)/b(x), where a(x), b(x), q(x), and r(x) are polynomials with the degree of r(x) less than the degree of b(x), using inspection, long division, or, for the more complicated examples, a computer algebra system.
Standard Identifier: A-APR.7
Grade Range:
9–12
Domain:
Arithmetic with Polynomials and Rational Expressions
Discipline:
Math III
Conceptual Category:
Algebra
Cluster:
Rewrite rational expressions. [Linear and quadratic denominators]
Standard:
(+) Understand that rational expressions form a system analogous to the rational numbers, closed under addition, subtraction multiplication, and division by a nonzero rational expression; add, subtract, multiply, and divide rational expressions.
Rewrite rational expressions. [Linear and quadratic denominators]
Standard:
(+) Understand that rational expressions form a system analogous to the rational numbers, closed under addition, subtraction multiplication, and division by a nonzero rational expression; add, subtract, multiply, and divide rational expressions.
Showing 81 - 90 of 100 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881