Mathematics Standards
Remove this criterion from the search
Building Functions
Remove this criterion from the search
Congruence
Remove this criterion from the search
Geometric Measurement and Dimension
Remove this criterion from the search
Interpreting Categorical and Quantitative Data
Remove this criterion from the search
Interpreting Functions
Remove this criterion from the search
Number and Operations—Fractions
Remove this criterion from the search
The Real Number System
Results
Showing 11 - 20 of 22 Standards
Standard Identifier: F-IF.8.b
Grade Range:
8–12
Domain:
Interpreting Functions
Discipline:
Math II
Conceptual Category:
Functions
Cluster:
Analyze functions using different representations. [Linear, exponential, quadratic, absolute value, step, piecewise-defined]
Standard:
Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function. Use the properties of exponents to interpret expressions for exponential functions. For example, identify percent rate of change in functions such as y = (1.02)^t, y = (0.97)^t, y = (1.01)^12t, and y = (1.2)^t/10, and classify them as representing exponential growth or decay.
Analyze functions using different representations. [Linear, exponential, quadratic, absolute value, step, piecewise-defined]
Standard:
Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function. Use the properties of exponents to interpret expressions for exponential functions. For example, identify percent rate of change in functions such as y = (1.02)^t, y = (0.97)^t, y = (1.01)^12t, and y = (1.2)^t/10, and classify them as representing exponential growth or decay.
Standard Identifier: F-IF.9
Grade Range:
8–12
Domain:
Interpreting Functions
Discipline:
Math II
Conceptual Category:
Functions
Cluster:
Analyze functions using different representations. [Linear, exponential, quadratic, absolute value, step, piecewise-defined]
Standard:
Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.
Analyze functions using different representations. [Linear, exponential, quadratic, absolute value, step, piecewise-defined]
Standard:
Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.
Standard Identifier: G-CO.10
Grade Range:
8–12
Domain:
Congruence
Discipline:
Math II
Conceptual Category:
Geometry
Cluster:
Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point.
Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point.
Standard Identifier: G-CO.11
Grade Range:
8–12
Domain:
Congruence
Discipline:
Math II
Conceptual Category:
Geometry
Cluster:
Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about parallelograms. Theorems include: opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals.
Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about parallelograms. Theorems include: opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals.
Standard Identifier: G-CO.9
Grade Range:
8–12
Domain:
Congruence
Discipline:
Math II
Conceptual Category:
Geometry
Cluster:
Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment’s endpoints.
Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
Standard:
Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment’s endpoints.
Standard Identifier: G-GMD.1
Grade Range:
8–12
Domain:
Geometric Measurement and Dimension
Discipline:
Math II
Conceptual Category:
Geometry
Cluster:
Explain volume formulas and use them to solve problems.
Standard:
Give an informal argument for the formulas for the circumference of a circle, area of a circle, volume of a cylinder, pyramid, and cone. Use dissection arguments, Cavalieri’s principle, and informal limit arguments.
Explain volume formulas and use them to solve problems.
Standard:
Give an informal argument for the formulas for the circumference of a circle, area of a circle, volume of a cylinder, pyramid, and cone. Use dissection arguments, Cavalieri’s principle, and informal limit arguments.
Standard Identifier: G-GMD.3
Grade Range:
8–12
Domain:
Geometric Measurement and Dimension
Discipline:
Math II
Conceptual Category:
Geometry
Cluster:
Explain volume formulas and use them to solve problems.
Standard:
Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems. *
Explain volume formulas and use them to solve problems.
Standard:
Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems. *
Standard Identifier: G-GMD.5
Grade Range:
8–12
Domain:
Geometric Measurement and Dimension
Discipline:
Math II
Conceptual Category:
Geometry
Cluster:
Visualize relationships between two-dimensional and three-dimensional objects.
Standard:
Know that the effect of a scale factor k greater than zero on length, area, and volume is to multiply each by k, k^2, and k^3, respectively; determine length, area and volume measures using scale factors. CA
Visualize relationships between two-dimensional and three-dimensional objects.
Standard:
Know that the effect of a scale factor k greater than zero on length, area, and volume is to multiply each by k, k^2, and k^3, respectively; determine length, area and volume measures using scale factors. CA
Standard Identifier: G-GMD.6
Grade Range:
8–12
Domain:
Geometric Measurement and Dimension
Discipline:
Math II
Conceptual Category:
Geometry
Cluster:
Visualize relationships between two-dimensional and three-dimensional objects.
Standard:
Verify experimentally that in a triangle, angles opposite longer sides are larger, sides opposite larger angles are longer, and the sum of any two side lengths is greater than the remaining side length; apply these relationships to solve realworld and mathematical problems. CA
Visualize relationships between two-dimensional and three-dimensional objects.
Standard:
Verify experimentally that in a triangle, angles opposite longer sides are larger, sides opposite larger angles are longer, and the sum of any two side lengths is greater than the remaining side length; apply these relationships to solve realworld and mathematical problems. CA
Standard Identifier: N-RN.1
Grade Range:
8–12
Domain:
The Real Number System
Discipline:
Math II
Conceptual Category:
Number and Quantity
Cluster:
Extend the properties of exponents to rational exponents.
Standard:
Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define 5^1/3 to be the cube root of 5 because we want (5^1/3)^3 = 5(^1/3)^3 to hold, so (5^1/3)^3 must equal 5.
Extend the properties of exponents to rational exponents.
Standard:
Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define 5^1/3 to be the cube root of 5 because we want (5^1/3)^3 = 5(^1/3)^3 to hold, so (5^1/3)^3 must equal 5.
Showing 11 - 20 of 22 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881