Mathematics Standards
Remove this criterion from the search
Number and Operations—Fractions
Remove this criterion from the search
Operations and Algebraic Thinking
Remove this criterion from the search
Statistics and Probability
Remove this criterion from the search
The Real Number System
Remove this criterion from the search
Trigonometric Functions
Results
Showing 91 - 100 of 104 Standards
Standard Identifier: 8.SP.4
Grade:
8
Domain:
Statistics and Probability
Cluster:
Investigate patterns of association in bivariate data.
Standard:
Understand that patterns of association can also be seen in bivariate categorical data by displaying frequencies and relative frequencies in a two-way table. Construct and interpret a two-way table summarizing data on two categorical variables collected from the same subjects. Use relative frequencies calculated for rows or columns to describe possible association between the two variables. For example, collect data from students in your class on whether or not they have a curfew on school nights and whether or not they have assigned chores at home. Is there evidence that those who have a curfew also tend to have chores?
Investigate patterns of association in bivariate data.
Standard:
Understand that patterns of association can also be seen in bivariate categorical data by displaying frequencies and relative frequencies in a two-way table. Construct and interpret a two-way table summarizing data on two categorical variables collected from the same subjects. Use relative frequencies calculated for rows or columns to describe possible association between the two variables. For example, collect data from students in your class on whether or not they have a curfew on school nights and whether or not they have assigned chores at home. Is there evidence that those who have a curfew also tend to have chores?
Standard Identifier: F-TF.8
Grade Range:
8–12
Domain:
Trigonometric Functions
Discipline:
Math II
Conceptual Category:
Functions
Cluster:
Prove and apply trigonometric identities.
Standard:
Prove the Pythagorean identity sin^2(θ ) + cos^2(θ ) = 1 and use it to find sin(θ ), cos(θ ), or tan(θ ) given sin(θ ), cos(θ ), or tan(θ ) and the quadrant of the angle.
Prove and apply trigonometric identities.
Standard:
Prove the Pythagorean identity sin^2(θ ) + cos^2(θ ) = 1 and use it to find sin(θ ), cos(θ ), or tan(θ ) given sin(θ ), cos(θ ), or tan(θ ) and the quadrant of the angle.
Standard Identifier: N-RN.1
Grade Range:
8–12
Domain:
The Real Number System
Discipline:
Math II
Conceptual Category:
Number and Quantity
Cluster:
Extend the properties of exponents to rational exponents.
Standard:
Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define 5^1/3 to be the cube root of 5 because we want (5^1/3)^3 = 5(^1/3)^3 to hold, so (5^1/3)^3 must equal 5.
Extend the properties of exponents to rational exponents.
Standard:
Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define 5^1/3 to be the cube root of 5 because we want (5^1/3)^3 = 5(^1/3)^3 to hold, so (5^1/3)^3 must equal 5.
Standard Identifier: N-RN.2
Grade Range:
8–12
Domain:
The Real Number System
Discipline:
Math II
Conceptual Category:
Number and Quantity
Cluster:
Extend the properties of exponents to rational exponents.
Standard:
Rewrite expressions involving radicals and rational exponents using the properties of exponents.
Extend the properties of exponents to rational exponents.
Standard:
Rewrite expressions involving radicals and rational exponents using the properties of exponents.
Standard Identifier: N-RN.3
Grade Range:
8–12
Domain:
The Real Number System
Discipline:
Math II
Conceptual Category:
Number and Quantity
Cluster:
Use properties of rational and irrational numbers.
Standard:
Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.
Use properties of rational and irrational numbers.
Standard:
Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.
Standard Identifier: F-TF.1
Grade Range:
9–12
Domain:
Trigonometric Functions
Discipline:
Math III
Conceptual Category:
Functions
Cluster:
Extend the domain of trigonometric functions using the unit circle.
Standard:
Understand radian measure of an angle as the length of the arc on the unit circle subtended by the angle.
Extend the domain of trigonometric functions using the unit circle.
Standard:
Understand radian measure of an angle as the length of the arc on the unit circle subtended by the angle.
Standard Identifier: F-TF.1
Grade Range:
9–12
Domain:
Trigonometric Functions
Discipline:
Algebra II
Conceptual Category:
Functions
Cluster:
Extend the domain of trigonometric functions using the unit circle.
Standard:
Understand radian measure of an angle as the length of the arc on the unit circle subtended by the angle.
Extend the domain of trigonometric functions using the unit circle.
Standard:
Understand radian measure of an angle as the length of the arc on the unit circle subtended by the angle.
Standard Identifier: F-TF.2
Grade Range:
9–12
Domain:
Trigonometric Functions
Discipline:
Algebra II
Conceptual Category:
Functions
Cluster:
Extend the domain of trigonometric functions using the unit circle.
Standard:
Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers, interpreted as radian measures of angles traversed counterclockwise around the unit circle.
Extend the domain of trigonometric functions using the unit circle.
Standard:
Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers, interpreted as radian measures of angles traversed counterclockwise around the unit circle.
Standard Identifier: F-TF.2
Grade Range:
9–12
Domain:
Trigonometric Functions
Discipline:
Math III
Conceptual Category:
Functions
Cluster:
Extend the domain of trigonometric functions using the unit circle.
Standard:
Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers, interpreted as radian measures of angles traversed counterclockwise around the unit circle.
Extend the domain of trigonometric functions using the unit circle.
Standard:
Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers, interpreted as radian measures of angles traversed counterclockwise around the unit circle.
Standard Identifier: F-TF.2.1
Grade Range:
9–12
Domain:
Trigonometric Functions
Discipline:
Math III
Conceptual Category:
Functions
Cluster:
Extend the domain of trigonometric functions using the unit circle.
Standard:
Graph all 6 basic trigonometric functions. CA
Extend the domain of trigonometric functions using the unit circle.
Standard:
Graph all 6 basic trigonometric functions. CA
Showing 91 - 100 of 104 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881