Mathematics Standards
Results
Showing 71 - 80 of 102 Standards
Standard Identifier: A-CED.3
Grade Range:
7–12
Domain:
Creating Equations
Discipline:
Math I
Conceptual Category:
Algebra
Cluster:
Create equations that describe numbers or relationships. [Linear and exponential (integer inputs only); for A.CED.3, linear only]
Standard:
Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or non-viable options in a modeling context. For example, represent inequalities describing nutritional and cost constraints on combinations of different foods. *
Create equations that describe numbers or relationships. [Linear and exponential (integer inputs only); for A.CED.3, linear only]
Standard:
Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or non-viable options in a modeling context. For example, represent inequalities describing nutritional and cost constraints on combinations of different foods. *
Standard Identifier: A-CED.3
Grade Range:
7–12
Domain:
Creating Equations
Discipline:
Algebra I
Conceptual Category:
Algebra
Cluster:
Create equations that describe numbers or relationships. [Linear, quadratic, and exponential (integer inputs only); for A.CED.3 linear only]
Standard:
Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or non-viable options in a modeling context. For example, represent inequalities describing nutritional and cost constraints on combinations of different foods. *
Create equations that describe numbers or relationships. [Linear, quadratic, and exponential (integer inputs only); for A.CED.3 linear only]
Standard:
Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or non-viable options in a modeling context. For example, represent inequalities describing nutritional and cost constraints on combinations of different foods. *
Standard Identifier: A-CED.4
Grade Range:
7–12
Domain:
Creating Equations
Discipline:
Algebra I
Conceptual Category:
Algebra
Cluster:
Create equations that describe numbers or relationships. [Linear, quadratic, and exponential (integer inputs only); for A.CED.3 linear only]
Standard:
Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm’s law V = IR to highlight resistance R. *
Create equations that describe numbers or relationships. [Linear, quadratic, and exponential (integer inputs only); for A.CED.3 linear only]
Standard:
Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm’s law V = IR to highlight resistance R. *
Standard Identifier: A-CED.4
Grade Range:
7–12
Domain:
Creating Equations
Discipline:
Math I
Conceptual Category:
Algebra
Cluster:
Create equations that describe numbers or relationships. [Linear and exponential (integer inputs only); for A.CED.3, linear only]
Standard:
Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm’s law V = IR to highlight resistance R. *
Create equations that describe numbers or relationships. [Linear and exponential (integer inputs only); for A.CED.3, linear only]
Standard:
Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm’s law V = IR to highlight resistance R. *
Standard Identifier: N-RN.1
Grade Range:
7–12
Domain:
The Real Number System
Discipline:
Algebra I
Conceptual Category:
Number and Quantity
Cluster:
Extend the properties of exponents to rational exponents.
Standard:
Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define 5^1/3 to be the cube root of 5 because we want (5^1/3)^3 = 5(^1/3)^3 to hold, so (5^1/3)^3 must equal 5.
Extend the properties of exponents to rational exponents.
Standard:
Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define 5^1/3 to be the cube root of 5 because we want (5^1/3)^3 = 5(^1/3)^3 to hold, so (5^1/3)^3 must equal 5.
Standard Identifier: N-RN.2
Grade Range:
7–12
Domain:
The Real Number System
Discipline:
Algebra I
Conceptual Category:
Number and Quantity
Cluster:
Extend the properties of exponents to rational exponents.
Standard:
Rewrite expressions involving radicals and rational exponents using the properties of exponents.
Extend the properties of exponents to rational exponents.
Standard:
Rewrite expressions involving radicals and rational exponents using the properties of exponents.
Standard Identifier: N-RN.3
Grade Range:
7–12
Domain:
The Real Number System
Discipline:
Algebra I
Conceptual Category:
Number and Quantity
Cluster:
Use properties of rational and irrational numbers.
Standard:
Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.
Use properties of rational and irrational numbers.
Standard:
Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.
Standard Identifier: 8.G.1.a
Grade:
8
Domain:
Geometry
Cluster:
Understand congruence and similarity using physical models, transparencies, or geometry software.
Standard:
Verify experimentally the properties of rotations, reflections, and translations: Lines are taken to lines, and line segments to line segments of the same length.
Understand congruence and similarity using physical models, transparencies, or geometry software.
Standard:
Verify experimentally the properties of rotations, reflections, and translations: Lines are taken to lines, and line segments to line segments of the same length.
Standard Identifier: 8.G.1.b
Grade:
8
Domain:
Geometry
Cluster:
Understand congruence and similarity using physical models, transparencies, or geometry software.
Standard:
Verify experimentally the properties of rotations, reflections, and translations: Angles are taken to angles of the same measure.
Understand congruence and similarity using physical models, transparencies, or geometry software.
Standard:
Verify experimentally the properties of rotations, reflections, and translations: Angles are taken to angles of the same measure.
Standard Identifier: 8.G.1.c
Grade:
8
Domain:
Geometry
Cluster:
Understand congruence and similarity using physical models, transparencies, or geometry software.
Standard:
Verify experimentally the properties of rotations, reflections, and translations: Parallel lines are taken to parallel lines.
Understand congruence and similarity using physical models, transparencies, or geometry software.
Standard:
Verify experimentally the properties of rotations, reflections, and translations: Parallel lines are taken to parallel lines.
Showing 71 - 80 of 102 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881