Mathematics Standards
Remove this criterion from the search
Creating Equations
Remove this criterion from the search
Geometry
Remove this criterion from the search
Making Inferences and Justifying Conclusions
Remove this criterion from the search
Operations and Algebraic Thinking
Remove this criterion from the search
Similarity, Right Triangles, and Trigonometry
Results
Showing 71 - 80 of 140 Standards
Standard Identifier: A-CED.3
Grade Range:
7–12
Domain:
Creating Equations
Discipline:
Algebra I
Conceptual Category:
Algebra
Cluster:
Create equations that describe numbers or relationships. [Linear, quadratic, and exponential (integer inputs only); for A.CED.3 linear only]
Standard:
Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or non-viable options in a modeling context. For example, represent inequalities describing nutritional and cost constraints on combinations of different foods. *
Create equations that describe numbers or relationships. [Linear, quadratic, and exponential (integer inputs only); for A.CED.3 linear only]
Standard:
Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or non-viable options in a modeling context. For example, represent inequalities describing nutritional and cost constraints on combinations of different foods. *
Standard Identifier: A-CED.3
Grade Range:
7–12
Domain:
Creating Equations
Discipline:
Math I
Conceptual Category:
Algebra
Cluster:
Create equations that describe numbers or relationships. [Linear and exponential (integer inputs only); for A.CED.3, linear only]
Standard:
Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or non-viable options in a modeling context. For example, represent inequalities describing nutritional and cost constraints on combinations of different foods. *
Create equations that describe numbers or relationships. [Linear and exponential (integer inputs only); for A.CED.3, linear only]
Standard:
Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or non-viable options in a modeling context. For example, represent inequalities describing nutritional and cost constraints on combinations of different foods. *
Standard Identifier: A-CED.4
Grade Range:
7–12
Domain:
Creating Equations
Discipline:
Math I
Conceptual Category:
Algebra
Cluster:
Create equations that describe numbers or relationships. [Linear and exponential (integer inputs only); for A.CED.3, linear only]
Standard:
Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm’s law V = IR to highlight resistance R. *
Create equations that describe numbers or relationships. [Linear and exponential (integer inputs only); for A.CED.3, linear only]
Standard:
Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm’s law V = IR to highlight resistance R. *
Standard Identifier: A-CED.4
Grade Range:
7–12
Domain:
Creating Equations
Discipline:
Algebra I
Conceptual Category:
Algebra
Cluster:
Create equations that describe numbers or relationships. [Linear, quadratic, and exponential (integer inputs only); for A.CED.3 linear only]
Standard:
Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm’s law V = IR to highlight resistance R. *
Create equations that describe numbers or relationships. [Linear, quadratic, and exponential (integer inputs only); for A.CED.3 linear only]
Standard:
Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm’s law V = IR to highlight resistance R. *
Standard Identifier: 8.G.1.a
Grade:
8
Domain:
Geometry
Cluster:
Understand congruence and similarity using physical models, transparencies, or geometry software.
Standard:
Verify experimentally the properties of rotations, reflections, and translations: Lines are taken to lines, and line segments to line segments of the same length.
Understand congruence and similarity using physical models, transparencies, or geometry software.
Standard:
Verify experimentally the properties of rotations, reflections, and translations: Lines are taken to lines, and line segments to line segments of the same length.
Standard Identifier: 8.G.1.b
Grade:
8
Domain:
Geometry
Cluster:
Understand congruence and similarity using physical models, transparencies, or geometry software.
Standard:
Verify experimentally the properties of rotations, reflections, and translations: Angles are taken to angles of the same measure.
Understand congruence and similarity using physical models, transparencies, or geometry software.
Standard:
Verify experimentally the properties of rotations, reflections, and translations: Angles are taken to angles of the same measure.
Standard Identifier: 8.G.1.c
Grade:
8
Domain:
Geometry
Cluster:
Understand congruence and similarity using physical models, transparencies, or geometry software.
Standard:
Verify experimentally the properties of rotations, reflections, and translations: Parallel lines are taken to parallel lines.
Understand congruence and similarity using physical models, transparencies, or geometry software.
Standard:
Verify experimentally the properties of rotations, reflections, and translations: Parallel lines are taken to parallel lines.
Standard Identifier: 8.G.2
Grade:
8
Domain:
Geometry
Cluster:
Understand congruence and similarity using physical models, transparencies, or geometry software.
Standard:
Understand that a two-dimensional figure is congruent to another if the second can be obtained from the first by a sequence of rotations, reflections, and translations; given two congruent figures, describe a sequence that exhibits the congruence between them.
Understand congruence and similarity using physical models, transparencies, or geometry software.
Standard:
Understand that a two-dimensional figure is congruent to another if the second can be obtained from the first by a sequence of rotations, reflections, and translations; given two congruent figures, describe a sequence that exhibits the congruence between them.
Standard Identifier: 8.G.3
Grade:
8
Domain:
Geometry
Cluster:
Understand congruence and similarity using physical models, transparencies, or geometry software.
Standard:
Describe the effect of dilations, translations, rotations, and reflections on two-dimensional figures using coordinates.
Understand congruence and similarity using physical models, transparencies, or geometry software.
Standard:
Describe the effect of dilations, translations, rotations, and reflections on two-dimensional figures using coordinates.
Standard Identifier: 8.G.4
Grade:
8
Domain:
Geometry
Cluster:
Understand congruence and similarity using physical models, transparencies, or geometry software.
Standard:
Understand that a two-dimensional figure is similar to another if the second can be obtained from the first by a sequence of rotations, reflections, translations, and dilations; given two similar two-dimensional figures, describe a sequence that exhibits the similarity between them.
Understand congruence and similarity using physical models, transparencies, or geometry software.
Standard:
Understand that a two-dimensional figure is similar to another if the second can be obtained from the first by a sequence of rotations, reflections, translations, and dilations; given two similar two-dimensional figures, describe a sequence that exhibits the similarity between them.
Showing 71 - 80 of 140 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881