Mathematics Standards
Remove this criterion from the search
Creating Equations
Remove this criterion from the search
Expressing Geometric Properties with Equations
Remove this criterion from the search
Number and Operations in Base Ten
Remove this criterion from the search
Operations and Algebraic Thinking
Remove this criterion from the search
Seeing Structure in Expressions
Remove this criterion from the search
The Real Number System
Remove this criterion from the search
Using Probability to Make Decisions
Results
Showing 91 - 100 of 150 Standards
Standard Identifier: G-GPE.7
Grade Range:
7–12
Domain:
Expressing Geometric Properties with Equations
Discipline:
Math I
Conceptual Category:
Geometry
Cluster:
Use coordinates to prove simple geometric theorems algebraically. [Include distance formula; relate to Pythagorean Theorem.]
Standard:
Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula. *
Use coordinates to prove simple geometric theorems algebraically. [Include distance formula; relate to Pythagorean Theorem.]
Standard:
Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula. *
Standard Identifier: N-RN.1
Grade Range:
7–12
Domain:
The Real Number System
Discipline:
Algebra I
Conceptual Category:
Number and Quantity
Cluster:
Extend the properties of exponents to rational exponents.
Standard:
Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define 5^1/3 to be the cube root of 5 because we want (5^1/3)^3 = 5(^1/3)^3 to hold, so (5^1/3)^3 must equal 5.
Extend the properties of exponents to rational exponents.
Standard:
Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define 5^1/3 to be the cube root of 5 because we want (5^1/3)^3 = 5(^1/3)^3 to hold, so (5^1/3)^3 must equal 5.
Standard Identifier: N-RN.2
Grade Range:
7–12
Domain:
The Real Number System
Discipline:
Algebra I
Conceptual Category:
Number and Quantity
Cluster:
Extend the properties of exponents to rational exponents.
Standard:
Rewrite expressions involving radicals and rational exponents using the properties of exponents.
Extend the properties of exponents to rational exponents.
Standard:
Rewrite expressions involving radicals and rational exponents using the properties of exponents.
Standard Identifier: N-RN.3
Grade Range:
7–12
Domain:
The Real Number System
Discipline:
Algebra I
Conceptual Category:
Number and Quantity
Cluster:
Use properties of rational and irrational numbers.
Standard:
Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.
Use properties of rational and irrational numbers.
Standard:
Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.
Standard Identifier: A-CED.1
Grade Range:
8–12
Domain:
Creating Equations
Discipline:
Math II
Conceptual Category:
Algebra
Cluster:
Create equations that describe numbers or relationships.
Standard:
Create equations and inequalities in one variable including ones with absolute value and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions. CA *
Create equations that describe numbers or relationships.
Standard:
Create equations and inequalities in one variable including ones with absolute value and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions. CA *
Standard Identifier: A-CED.2
Grade Range:
8–12
Domain:
Creating Equations
Discipline:
Math II
Conceptual Category:
Algebra
Cluster:
Create equations that describe numbers or relationships.
Standard:
Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. *
Create equations that describe numbers or relationships.
Standard:
Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. *
Standard Identifier: A-CED.4
Grade Range:
8–12
Domain:
Creating Equations
Discipline:
Math II
Conceptual Category:
Algebra
Cluster:
Create equations that describe numbers or relationships.
Standard:
Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. * [Include formulas involving quadratic terms.]
Create equations that describe numbers or relationships.
Standard:
Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. * [Include formulas involving quadratic terms.]
Standard Identifier: A-SSE.1.a
Grade Range:
8–12
Domain:
Seeing Structure in Expressions
Discipline:
Math II
Conceptual Category:
Algebra
Cluster:
Interpret the structure of expressions. [Quadratic and exponential]
Standard:
Interpret expressions that represent a quantity in terms of its context. * Interpret parts of an expression, such as terms, factors, and coefficients. *
Interpret the structure of expressions. [Quadratic and exponential]
Standard:
Interpret expressions that represent a quantity in terms of its context. * Interpret parts of an expression, such as terms, factors, and coefficients. *
Standard Identifier: A-SSE.1.b
Grade Range:
8–12
Domain:
Seeing Structure in Expressions
Discipline:
Math II
Conceptual Category:
Algebra
Cluster:
Interpret the structure of expressions. [Quadratic and exponential]
Standard:
Interpret expressions that represent a quantity in terms of its context. * Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret P(1 + r)^n as the product of P and a factor not depending on P. *
Interpret the structure of expressions. [Quadratic and exponential]
Standard:
Interpret expressions that represent a quantity in terms of its context. * Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret P(1 + r)^n as the product of P and a factor not depending on P. *
Standard Identifier: A-SSE.2
Grade Range:
8–12
Domain:
Seeing Structure in Expressions
Discipline:
Math II
Conceptual Category:
Algebra
Cluster:
Interpret the structure of expressions. [Quadratic and exponential]
Standard:
Use the structure of an expression to identify ways to rewrite it. For example, see x^4 – y^4 as (x^2)^2 – (y^2)^2, thus recognizing it as a difference of squares that can be factored as (x^2 – y^2)(x^2 + y^2).
Interpret the structure of expressions. [Quadratic and exponential]
Standard:
Use the structure of an expression to identify ways to rewrite it. For example, see x^4 – y^4 as (x^2)^2 – (y^2)^2, thus recognizing it as a difference of squares that can be factored as (x^2 – y^2)(x^2 + y^2).
Showing 91 - 100 of 150 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881