Mathematics Standards
Results
Showing 31 - 40 of 46 Standards
Standard Identifier: 8.NS.2
Grade:
8
Domain:
The Number System
Cluster:
Know that there are numbers that are not rational, and approximate them by rational numbers.
Standard:
Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions (e.g.,π^2). For example, by truncating the decimal expansion of √2, show that √2 is between 1 and 2, then between 1.4 and 1.5, and explain how to continue on to get better approximations.
Know that there are numbers that are not rational, and approximate them by rational numbers.
Standard:
Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions (e.g.,π^2). For example, by truncating the decimal expansion of √2, show that √2 is between 1 and 2, then between 1.4 and 1.5, and explain how to continue on to get better approximations.
Standard Identifier: A-APR.1
Grade Range:
8–12
Domain:
Arithmetic with Polynomials and Rational Expressions
Discipline:
Math II
Conceptual Category:
Algebra
Cluster:
Perform arithmetic operations on polynomials. [Polynomials that simplify to quadratics]
Standard:
Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.
Perform arithmetic operations on polynomials. [Polynomials that simplify to quadratics]
Standard:
Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.
Standard Identifier: A-APR.1
Grade Range:
9–12
Domain:
Arithmetic with Polynomials and Rational Expressions
Discipline:
Math III
Conceptual Category:
Algebra
Cluster:
Perform arithmetic operations on polynomials. [Beyond quadratic]
Standard:
Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.
Perform arithmetic operations on polynomials. [Beyond quadratic]
Standard:
Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.
Standard Identifier: A-APR.1
Grade Range:
9–12
Domain:
Arithmetic with Polynomials and Rational Expressions
Discipline:
Algebra II
Conceptual Category:
Algebra
Cluster:
Perform arithmetic operations on polynomials. [Beyond quadratic]
Standard:
Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.
Perform arithmetic operations on polynomials. [Beyond quadratic]
Standard:
Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.
Standard Identifier: A-APR.2
Grade Range:
9–12
Domain:
Arithmetic with Polynomials and Rational Expressions
Discipline:
Algebra II
Conceptual Category:
Algebra
Cluster:
Understand the relationship between zeros and factors of polynomials.
Standard:
Know and apply the Remainder Theorem: For a polynomial p(x) and a number a, the remainder on division by x – a is p(a), so p(a) = 0 if and only if (x – a) is a factor of p(x).
Understand the relationship between zeros and factors of polynomials.
Standard:
Know and apply the Remainder Theorem: For a polynomial p(x) and a number a, the remainder on division by x – a is p(a), so p(a) = 0 if and only if (x – a) is a factor of p(x).
Standard Identifier: A-APR.2
Grade Range:
9–12
Domain:
Arithmetic with Polynomials and Rational Expressions
Discipline:
Math III
Conceptual Category:
Algebra
Cluster:
Understand the relationship between zeros and factors of polynomials.
Standard:
Know and apply the Remainder Theorem: For a polynomial p(x) and a number a, the remainder on division by x – a is p(a), so p(a) = 0 if and only if (x – a) is a factor of p(x).
Understand the relationship between zeros and factors of polynomials.
Standard:
Know and apply the Remainder Theorem: For a polynomial p(x) and a number a, the remainder on division by x – a is p(a), so p(a) = 0 if and only if (x – a) is a factor of p(x).
Standard Identifier: A-APR.3
Grade Range:
9–12
Domain:
Arithmetic with Polynomials and Rational Expressions
Discipline:
Math III
Conceptual Category:
Algebra
Cluster:
Understand the relationship between zeros and factors of polynomials.
Standard:
Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial.
Understand the relationship between zeros and factors of polynomials.
Standard:
Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial.
Standard Identifier: A-APR.3
Grade Range:
9–12
Domain:
Arithmetic with Polynomials and Rational Expressions
Discipline:
Algebra II
Conceptual Category:
Algebra
Cluster:
Understand the relationship between zeros and factors of polynomials.
Standard:
Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial.
Understand the relationship between zeros and factors of polynomials.
Standard:
Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial.
Standard Identifier: A-APR.4
Grade Range:
9–12
Domain:
Arithmetic with Polynomials and Rational Expressions
Discipline:
Algebra II
Conceptual Category:
Algebra
Cluster:
Use polynomial identities to solve problems.
Standard:
Prove polynomial identities and use them to describe numerical relationships. For example, the polynomial identity (x^2 + y^2)2= (x^2 – y^2)^2 + (2xy)^2 can be used to generate Pythagorean triples.
Use polynomial identities to solve problems.
Standard:
Prove polynomial identities and use them to describe numerical relationships. For example, the polynomial identity (x^2 + y^2)2= (x^2 – y^2)^2 + (2xy)^2 can be used to generate Pythagorean triples.
Standard Identifier: A-APR.4
Grade Range:
9–12
Domain:
Arithmetic with Polynomials and Rational Expressions
Discipline:
Math III
Conceptual Category:
Algebra
Cluster:
Use polynomial identities to solve problems.
Standard:
Prove polynomial identities and use them to describe numerical relationships. For example, the polynomial identity (x^2 + y^2)^2= (x^2 – y^2)^2 + (2xy)^2 can be used to generate Pythagorean triples.
Use polynomial identities to solve problems.
Standard:
Prove polynomial identities and use them to describe numerical relationships. For example, the polynomial identity (x^2 + y^2)^2= (x^2 – y^2)^2 + (2xy)^2 can be used to generate Pythagorean triples.
Showing 31 - 40 of 46 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881