Mathematics Standards
Remove this criterion from the search
Geometry
Remove this criterion from the search
Linear, Quadratic, and Exponential Models
Remove this criterion from the search
Making Inferences and Justifying Conclusions
Remove this criterion from the search
Reasoning with Equations and Inequalities
Remove this criterion from the search
The Real Number System
Results
Showing 61 - 70 of 116 Standards
Standard Identifier: F-LE.5
Grade Range:
7–12
Domain:
Linear, Quadratic, and Exponential Models
Discipline:
Math I
Conceptual Category:
Functions
Cluster:
Interpret expressions for functions in terms of the situation they model. [Linear and exponential of form f(x) = b^x + k]
Standard:
Interpret the parameters in a linear or exponential function in terms of a context. *
Interpret expressions for functions in terms of the situation they model. [Linear and exponential of form f(x) = b^x + k]
Standard:
Interpret the parameters in a linear or exponential function in terms of a context. *
Standard Identifier: F-LE.5
Grade Range:
7–12
Domain:
Linear, Quadratic, and Exponential Models
Discipline:
Algebra I
Conceptual Category:
Functions
Cluster:
Interpret expressions for functions in terms of the situation they model.
Standard:
Interpret the parameters in a linear or exponential function in terms of a context. * [Linear and exponential of form f(x) = b^x + k]
Interpret expressions for functions in terms of the situation they model.
Standard:
Interpret the parameters in a linear or exponential function in terms of a context. * [Linear and exponential of form f(x) = b^x + k]
Standard Identifier: F-LE.6
Grade Range:
7–12
Domain:
Linear, Quadratic, and Exponential Models
Discipline:
Algebra I
Conceptual Category:
Functions
Cluster:
Interpret expressions for functions in terms of the situation they model.
Standard:
Apply quadratic functions to physical problems, such as the motion of an object under the force of gravity. CA *
Interpret expressions for functions in terms of the situation they model.
Standard:
Apply quadratic functions to physical problems, such as the motion of an object under the force of gravity. CA *
Standard Identifier: N-RN.1
Grade Range:
7–12
Domain:
The Real Number System
Discipline:
Algebra I
Conceptual Category:
Number and Quantity
Cluster:
Extend the properties of exponents to rational exponents.
Standard:
Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define 5^1/3 to be the cube root of 5 because we want (5^1/3)^3 = 5(^1/3)^3 to hold, so (5^1/3)^3 must equal 5.
Extend the properties of exponents to rational exponents.
Standard:
Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define 5^1/3 to be the cube root of 5 because we want (5^1/3)^3 = 5(^1/3)^3 to hold, so (5^1/3)^3 must equal 5.
Standard Identifier: N-RN.2
Grade Range:
7–12
Domain:
The Real Number System
Discipline:
Algebra I
Conceptual Category:
Number and Quantity
Cluster:
Extend the properties of exponents to rational exponents.
Standard:
Rewrite expressions involving radicals and rational exponents using the properties of exponents.
Extend the properties of exponents to rational exponents.
Standard:
Rewrite expressions involving radicals and rational exponents using the properties of exponents.
Standard Identifier: N-RN.3
Grade Range:
7–12
Domain:
The Real Number System
Discipline:
Algebra I
Conceptual Category:
Number and Quantity
Cluster:
Use properties of rational and irrational numbers.
Standard:
Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.
Use properties of rational and irrational numbers.
Standard:
Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.
Standard Identifier: 8.G.1.a
Grade:
8
Domain:
Geometry
Cluster:
Understand congruence and similarity using physical models, transparencies, or geometry software.
Standard:
Verify experimentally the properties of rotations, reflections, and translations: Lines are taken to lines, and line segments to line segments of the same length.
Understand congruence and similarity using physical models, transparencies, or geometry software.
Standard:
Verify experimentally the properties of rotations, reflections, and translations: Lines are taken to lines, and line segments to line segments of the same length.
Standard Identifier: 8.G.1.b
Grade:
8
Domain:
Geometry
Cluster:
Understand congruence and similarity using physical models, transparencies, or geometry software.
Standard:
Verify experimentally the properties of rotations, reflections, and translations: Angles are taken to angles of the same measure.
Understand congruence and similarity using physical models, transparencies, or geometry software.
Standard:
Verify experimentally the properties of rotations, reflections, and translations: Angles are taken to angles of the same measure.
Standard Identifier: 8.G.1.c
Grade:
8
Domain:
Geometry
Cluster:
Understand congruence and similarity using physical models, transparencies, or geometry software.
Standard:
Verify experimentally the properties of rotations, reflections, and translations: Parallel lines are taken to parallel lines.
Understand congruence and similarity using physical models, transparencies, or geometry software.
Standard:
Verify experimentally the properties of rotations, reflections, and translations: Parallel lines are taken to parallel lines.
Standard Identifier: 8.G.2
Grade:
8
Domain:
Geometry
Cluster:
Understand congruence and similarity using physical models, transparencies, or geometry software.
Standard:
Understand that a two-dimensional figure is congruent to another if the second can be obtained from the first by a sequence of rotations, reflections, and translations; given two congruent figures, describe a sequence that exhibits the congruence between them.
Understand congruence and similarity using physical models, transparencies, or geometry software.
Standard:
Understand that a two-dimensional figure is congruent to another if the second can be obtained from the first by a sequence of rotations, reflections, and translations; given two congruent figures, describe a sequence that exhibits the congruence between them.
Showing 61 - 70 of 116 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881